Assessment of the Technological Properties of High Temperature Fired Clayey Ceramics Incorporated with Glass Waste

Article Preview

Abstract:

The incorporation of industrial wastes into clayey ceramics used in civil construction is becoming a worldwide procedure not only to provide an environmentally correct destination for the waste but, in some cases, to improve the ceramic properties. The objective of the present work was to evaluate the effect of incorporation of a glass powder waste from decontamination process of fluorescent lamps into clayey ceramics. This evaluation was performed based on the technological properties of water absorption, linear shrinkage ad flexural strength. The properties evaluation was complemented by optical microscopy structural observation. The glass waste was incorporated in up to 30 wt% and specimens were uniaxially pressed at 20 MPa and fired at a relatively higher temperature of 1000°C. The results confirmed a substantial improvement of both the water absorption and the strength with glass waste incorporation into clayey ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-454

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.C.C. Caldas, A.S.C. Morais, S.N. Monteiro, C.M.F. Vieira: Mater. Sci. Forum Vols. 727-728 (2012), p.999.

Google Scholar

[2] R.H. Doremus: Glass Science. (John Wiley & Sons Ltd, 2nd ed. New York, 1994).

Google Scholar

[3] Plano Nacional de Eficiência Energética - PNEf (in Portuguese) Premisses and Basic Directives, Brazil 2011. Available at http: /www. mme. gov. br/mme/galerias/arquivos/PlanoNacEfiEnergetica. pdf.

Google Scholar

[4] MME - Ministério de Minas e Energia (Ministry of Mining and Energy) Interministry Decree 1. 008, de 31 de dezembro de 2010 – Program of Compact Fluorescent Lamps Brazilian Federal Official Daily Newspaper 4, January 6, 2011, ISSN 1677-7042. (In Portuguese).

Google Scholar

[5] T.C. Shutt, J.H. Abrahams, H.H. Campbell: American Ceramic Society Bulletin Vol. 51 (1972), p.670.

Google Scholar

[6] N.F. Youssef, M.F. Abadir, M.A.O. Shater: Journal of the European Ceramic Soc. Vol. 18 (1998), p.1721.

Google Scholar

[7] F. Mattencci, M. Dondi, G. Guarini, Effect of soda-lime glass on sintering and technological properties of porcelain stoneware tiles, Ceramic International 28 (2002) 873-880.

DOI: 10.1016/s0272-8842(02)00067-6

Google Scholar

[8] A.C. Morelli, J.B. Baldo: Ceramica Industrial Vol. 8 (2003), p.42.

Google Scholar

[9] S.R. Bragança, C.P. Bergmann: J. European Ceramic Soc. Vol. 24 (2004), p.2383.

Google Scholar

[10] K.O. Godinho, J.N.F. Holanda, A.G.P. Silva: Ceramica Vol. 51 (2005), p.419.

Google Scholar

[11] Y. Pontikes, A. Christogerou, G.N. Angelopoulos, E. Rambaldi, A. Tucci, L. Espósito: Glass Technology Vol. 46 (2005), p.200.

Google Scholar

[12] Y. Pontikes, L. Espósito, A. Tucci, G.N. Angelopoulos: J. European Ceramic Soc. Vol. 27 (2007), p.1657.

Google Scholar

[13] C.M.F. Vieira, S.N. Monteiro: Rev. Materia Vol. 14 (2009), p.881.

Google Scholar

[14] E. Furlani, G. Tonello, S. Maschio, E. Aneggi, D. Minichelli, S. Brucknera, E. Lucchini: Ceramics International Vol. 37 (2011), p.1293.

DOI: 10.1016/j.ceramint.2010.12.005

Google Scholar

[15] D. Eliche-Quesada, C. Martínez-García, M.L. Martínez-Cartas, M.T. Cotes-Palomino, L. Pérez-Villarejo, N. Cruz-Pérez, F.A. Corpas-Iglesias: Applied Clay Science Vol. 52 (2011), p.270.

DOI: 10.1016/j.clay.2011.03.003

Google Scholar

[16] N. Marinoni, D. D'Alessio, V. Diella, A. Pavese, F. Francescon: Journal of Environmental Management Vol. 124 (2013), p.100.

Google Scholar

[17] L. Zhang: Construction and Building Materials Vol. 47 (2013), p.643.

Google Scholar

[18] S.N. Monteiro, C.M.F. Vieira: Constr. Build. Mater. Vol. 68 (2014), p.599.

Google Scholar

[19] American Society for Testing and Materials - ASTM. Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, C 373-72, USA, (1972).

DOI: 10.1520/c0373-88r06

Google Scholar

[20] American Society for Testing and Materials - ASTM. Flexural Properties of Ceramic Whiteware Materials, C 674-77, USA, (1977).

Google Scholar

[21] A.R. Migliore Jr., Zanotto: Ceramica Vol. 38 (253) (1992), p.7.

Google Scholar

[22] Brazilian Association for Technical Norms. Ceramic components - Ceramic roof tiles - Terminology, requirements and testing methods. Rio de Janeiro: ABNT 2009. (NBR 15310/2009). (In Portuguese).

Google Scholar

[23] Brazilian Association for Technical Norms. Ceramic components Part 1: Hollow ceramic blocks for non load-bearing masonry - Terminology and requirements. Rio de Janeiro: ABNT 2005. (NBR 15270-1) (In Portuguese).

Google Scholar

[24] P.S. Santos: Science and Technology of Clays. (Edgard Blucher2nd ed., vol. 1, São Paulo, 1989).

Google Scholar

[25] W.D. Kingery: Introduction to Ceramics. (John Wiley & Sons, New York, 1975).

Google Scholar