Microstructural Analysis of Clayey Ceramics Incorporated with Fluorescent Lamp Glass Waste

Article Preview

Abstract:

The recycling of industrial wastes has become a worldwide practice owing to environmental and economical advantages. In the case of waste addition to clayey ceramics for civil construction, this sustainable practice may also bring technical benefits. Fluorescent lamps, today replacing incandescent lamps, generate typical glass waste that can improve the properties of clayey ceramics. The fluxing behavior of the glass waste contributes to the ceramic sintering mechanisms by reducing the porosity. In the present work, the effect of incorporation of 30 wt% of Hg-cleaned fluorescent lamps glass waste was investigated by means of microstructural analysis. Waste incorporated clayey ceramics, fired at 850 and 1100°C were analyzed by optical and scanning electron microscopy as well as by X-ray diffraction. The results revealed the microstructural mechanism responsible for the improvement of the ceramic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

468-473

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.C. Shutt, J.H. Abrahams, H.H. Campbell: American Ceramic Society Bulletin Vol. 51 (1972), p.670.

Google Scholar

[2] N.F. Youssef, M.F. Abadir, M.A.O. Shater: Journal of the European Ceramic Soc. Vol. 18 (1998), p.1721.

Google Scholar

[3] F. Mattencci, M. Dondi, G. Guarini: Ceramic International Vol. 28(8) (2002), p.873.

Google Scholar

[4] A.C. Morelli, J.B. Baldo: Ceramica Industrial Vol. 8 (2003), p.42.

Google Scholar

[5] S.R. Bragança, C.P. Bergmann: J. European Ceramic Soc. Vol. 24 (2004), p.2383.

Google Scholar

[6] K.O. Godinho, J.N.F. Holanda, A.G.P. Silva: Ceramica Vol. 51 (2005), p.419.

Google Scholar

[7] Y. Pontikes, A. Christogerou, G.N. Angelopoulos, E. Rambaldi, A. Tucci, L. Espósito: Glass Technology Vol. 46 (2005), p.200.

Google Scholar

[8] Y. Pontikes, L. Espósito, A. Tucci, G.N. Angelopoulos: J. European Ceramic Soc. Vol. 27 (2007), p.1657.

Google Scholar

[9] C.M.F. Vieira, S.N. Monteiro: Rev. Materia Vol. 14 (2009), p.881.

Google Scholar

[10] E. Furlani, G. Tonello, S. Maschio, E. Aneggi, D. Minichelli, S. Brucknera, E. Lucchini: Ceramics International Vol. 37 (2011), p.1293.

DOI: 10.1016/j.ceramint.2010.12.005

Google Scholar

[11] D. Eliche-Quesada, C. Martínez-García, M.L. Martínez-Cartas, M. T. Cotes-Palomino, L. Pérez-Villarejo, N. Cruz-Pérez, F. A. Corpas-Iglesias: Applied Clay Science Vol. 52 (2011), p.270.

DOI: 10.1016/j.clay.2011.03.003

Google Scholar

[12] N. Marinoni, D. D'Alessio, V. Diella, A. Pavese, F. Francescon: Journal of Environmental Management Vol. 124 (2013), p.100.

Google Scholar

[13] L. Zhang: Construction and Building Materials Vol. 47 (2013), p.643.

Google Scholar

[14] S.N. Monteiro, C.M.F. Vieira: Constr. Build. Mater. Vol. 68 (2014), p.599.

Google Scholar

[15] T.C.C. Caldas, A.S.C. Morais, S.N. Monteiro, C.M.F. Vieira: Mater. Sci. Forum Vols. 727-728 (2012), p.994.

Google Scholar

[16] Institute of Technological Research – IPT. Classification of residues from fluorescent lamps according to the NBR 1004 Technical Report n: 57745, São Paulo, Brazil, 2002. (In Portuguese).

Google Scholar