Short Glass Fiber Reinforced PA6 Materials for Automotiv Applications – Assessment Aging Behavior with Methods of Polymer Diagnostics

Article Preview

Abstract:

The qualitative and quantitative assessment of the aging behavior of polymers and polymeric products depends on a substantial characterization of the materials properties and is linked to a multi-parametric approach. However, the choice of suitable polymer diagnostics test methods as well as parameters for the characterization of the material behavior are important. The aging of products can be attributed to complex factors and due to the superposition of different factors, the generation of simple relationships is impossible. Important materials for the automotive industry are fiber-reinforced PA6 materials, which can fulfill the requirements related to the mechanical properties like stiffness, strength, toughness as well as other properties. However, the knowledge for the assessment of different climate conditions as well as media on the aging behavior of such materials is not complete. For this reason, it is essential to describe the behavior with a material-physical approach.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

19-27

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DIN 50035 (2012-09): Terms and Definitions used on Ageing of Materials – Polymeric Materials.

Google Scholar

[2] G. Schmitt: Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control 2009, World Corrosion Organization.

Google Scholar

[3] ISO 3167 (2014-08): Plastics – Multipurpose Test Specimens.

Google Scholar

[4] IEC 60068-2-2 (2007): Environmental Testing – Part 2-2: Tests – Test B: Dry Heat.

Google Scholar

[5] IEC 60068-2-78 (2013): Environmental Testing – Part 2-78: Tests – Test Cab: Damp Heat, Steady State.

DOI: 10.3403/30231205

Google Scholar

[6] IEC 60068-2-1 (2007): Environmental Testing – Part 2-1: Tests – Tests A: Cold.

Google Scholar

[7] Precision of 3D CT-Systems, GE Sensing & Inspection Technologies GmbH, Wunstdorf, (2014).

Google Scholar

[8] C. Reinhart: Direkte CT-Datenanalyse mit VGStudio MAX 2. 0. Konzepte, Funktionen, erreichbare Performance und Messunsicherheit anhand realer Beispielen. in: Kastner, J. (Ed. ), Industrielle Computertomografie Tagung 2008. Shaker Verlag Aachen, 2008, 125–136.

Google Scholar

[9] General Electric: Technische Daten Phoenix Nanotom M, http: /www. gemcs. com/de/phoenix-xray. html.

Google Scholar

[10] ISO 527-1 (2012-02): Plastics – Determination of Tensile Properties – Part 1: General Principles.

Google Scholar

[11] ISO 527-2 (2012-02): Plastics – Determination of Tensile Properties – Part 2: Test Conditions for Moulding and Extrusion Plastics.

DOI: 10.3403/00921383u

Google Scholar

[12] ISO 2039-1 (2001-12): Plastics – Determination of Hardness – Part 1: Ball Indentation Method.

Google Scholar

[13] W. Grellmann, S. Seidler, W. Hesse: Testing of Plastics – Instrumented Charpy Impact Test (ICIT) – Procedure for Determining the Crack Resistance Behaviour Using the Instrumented Impact Test. MPK-ICIT: 2014-08 Part I and Part II, (2014).

DOI: 10.1007/978-3-662-04556-5_4

Google Scholar

[14] J. Karger-Kocsis: Reinforced polymer blends. in: Paul, D.R., Bucknall, C.B. Eds. ), Polymer Blends, Volume 2: Performance. John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 2000, 395–428.

Google Scholar

[15] A. Bernasconi, P. Davoli, A. Basile, A. Filippi: Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. International Journal of Fatigue, 29 (2007) 199–208.

DOI: 10.1016/j.ijfatigue.2006.04.001

Google Scholar

[16] J. F. O'Gara, G. E. Novak, M. G. Wyzgoski: Predicting the tensile strength of short glass fiber reinforced injection molded plastics. 10th-Annual SPE® Automotive Composites Conference & Exhibition (ACCE), Sept 15–16 2010, Troy, Michigan, (2010).

Google Scholar

[17] F. Johannaber, W. Michaeli: Handbuch Spritzgießen. Carl Hanser Verlag GmbH & Co. KG (2004).

Google Scholar

[18] R. S. Bay, C. L. Tucker: Fiber orientation in simple injection moldings. Part I: Theory and numerical methods. Polymer Composites, 13 (1992) 317–331.

DOI: 10.1002/pc.750130409

Google Scholar

[19] R. S. Bay, C. L. Tucker: Fiber orientation in simple injection moldings. Part II: Experimental results. Polymer Composites, 13 (1992) 332–341.

DOI: 10.1002/pc.750130410

Google Scholar

[20] F. Folgar, C. L. Tucker: Orientation behavior of fibers in concentrated suspensions. Journal of Reinforced Plastics and Composites, 3 (1984) 98–119.

DOI: 10.1177/073168448400300201

Google Scholar

[21] J. Wang, X. Jin: Comparison of recent fiber orientation models in autodesk moldflow insight simulations with measured fiber orientation data. Polymer Processing Society 26th Annual Meeting, Banff, Canada, (2010).

Google Scholar

[22] D. McNally: Short fiber orientation and its effects on the properties of thermoplastic composite materials. Polymer Plast Tech Eng, 8 (1977) 101–154.

DOI: 10.1080/03602557708545033

Google Scholar

[23] A. Bernasconi, F. Cosmi, D. Dreossi: Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Composites Science and Technology, 68 (2008) 2574–2581.

DOI: 10.1016/j.compscitech.2008.05.022

Google Scholar

[24] S. Toll, P. O. Andersson: Microstructure of long- and short-fiber reinforced injection molded polyamide. Polymer Composites, 14 (1993) 116–125.

DOI: 10.1002/pc.750140205

Google Scholar

[25] J. L. Thomason: Structure–property relationships in glass-reinforced polyamide, Part 3: Effects of hydrolysis ageing on the dimensional stability and performance of short glass–fiber-reinforced polyamide 66. Polymer Composites, 28 (2007) 344–354.

DOI: 10.1002/pc.20312

Google Scholar

[26] T. Illing, H. Gotzig, M. Schoßig, C. Bierögel, W. Grellmann: Influence of hygrothermal aging on tensile strength and poisson ratio of thin injection-molded short glass-fiber reinforced PA6. J. Appl. Polym. Sci., (2015) in preparation.

DOI: 10.3390/fib4020017

Google Scholar

[27] T. Illing, M. Schoßig, C. Bierögel, W. Grellmann: Hygrothermal aging of injection-molded PA6 GF-materials considering automotive requirements. in: Grellmann, W., Langer, B. Eds. ), Deformation and Fracture Behaviour of Polymer Materials. Springer, Berlin, Heidelberg, 2015, in preparation.

DOI: 10.1007/978-3-319-41879-7_28

Google Scholar

[28] N. Jia, H. A. Fraenkel, V. A. Kagan: Effects of moisture conditioning methods on mechanical properties of injection molded nylon 6. Journal of Reinforced Plastics and Composites, 23 (2004) 729–737.

DOI: 10.1177/0731684404030730

Google Scholar

[29] J. Brandrup, E. H. Immergut, E. A. Grulke (Eds. ): Polymer Handbook. John Wiley & Sons Inc., New York, (1999).

Google Scholar

[30] W. Grellmann, S. Seidler (Eds. ): Polymer Testing. Carl Hanser Verlag, (2013).

Google Scholar

[31] R. Steiner: Berechnung von J-R-Kurven aus Kraft-Durchbiegungs-Diagrammen auf Basis des Gelenkprüfkörpers. Fortschr. -Berichte VDI-Reihe 18: Mechanik/Bruchmechanik Nr. 208, VDI-Verlag Düsseldorf, (1997).

DOI: 10.1007/978-3-642-58766-5_10

Google Scholar

[32] B. Langer, M. Schoßig, W. Grellmann: Charakterisierung des Alterungsverhaltens von Polymerwerkstoffen für die Automobil- und Hausgeräteindustrie. in: Christ, H. -J. (Ed. ), Fortschritte in der Werkstoffprüfung für Forschung und Technik. 31. Vortrags- und Diskussionstagung in der Werkstoffprüfung 2013. Neu-Ulm, 28. –29. November 2013, 349–354.

DOI: 10.1007/978-3-662-10908-3_3

Google Scholar

[33] W. Grellmann, B. Langer: Methods of polymer diagnostics for the automotive industry. Materialprüfung, 55 (2013) 17–22.

Google Scholar