Influence of Different Thawing Salts on the Material Properties of PA66GF30

Article Preview

Abstract:

Rising weight and cost requirements in the automotive industry have led to an increasing substitution of metals by short-or endless-fiber reinforced thermoplastics. The use of thermoplastic matrices is necessary to meet the cycle time challenges which arise from large production quantities. The substituted components are often applied in the chassis or motor compartment, which means an exposition to environmental influences, e.g. moisture or thawing salts, during the entire operating lifetime. The degradation of the material properties of PA6GF30 due to a longtime exposition in DI (deionized) water, sodium-and calcium-chloride solutions is investigated and the fracture behavior examined by scanning electron microscopy analysis. Also, the fatigue properties were determined on a special test rig, which allows the spraying of the specimen with the different fluids during the mechanical cyclic testing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

28-35

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Schönberger, Prognose des Steinschlags und der induzierten Korrosion am Fahrzeug, dissertation, Universität Erlangen, (2012).

Google Scholar

[2] R. Kiefer, E. Boese, A. Heyn, M. Engelking and R. Hillert, Korrosion verchromter Kunststoffanbauteile unter verschärfter Streusalzbelastung mit CaCl2, 14. Sommerkurs Werkstoffe und Fügen am Institut für Werkstoff und Fügetechnik (Hrsg. ), Universität Magdeburg, (2011).

Google Scholar

[3] Bayrisches Landesamt für Wasserwirtschaft (Hrsg. ), Salzstreuung - Auswirkungen auf die Gewässer, Merblatt Nr. 3. 2/1, (1999).

Google Scholar

[4] BASF (Hrsg. ), Ultramid, Ultradur und Ultraform: Verhalten gegenüber Chemikalien, (2013).

Google Scholar

[5] H. Dominighaus, P. Elsner (Hrsg. ), P. Eyerer (Hrsg. ) and T. Hirth (Hrsg. ), Kunststoffe: Eigenschaften und Anwendungen, sixth ed., Springer, Berlin, (2007).

DOI: 10.1007/978-3-540-72401-8

Google Scholar

[6] A. Launay, Y. Marco, M.H. Maitournam and I. Raoult, Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide, Mechanics of Materials, 56 (2013) 1-10.

DOI: 10.1016/j.mechmat.2012.08.008

Google Scholar

[7] H. Schürmann, Konstruieren mit Faser-Kunststoff-Verbunden, second ed., Springer, Berlin Heidelberg, (2007).

DOI: 10.1007/978-3-540-72190-1_14

Google Scholar

[8] K. Lutterbeck, Das Verhalten von Kunststoffen unter dem Einfluss wechselnder Umgebungsfeuchte und -temperatur, dissertation, RWTH Aachen, (1984).

Google Scholar

[9] K. Rajeesh, R. Gnanamoorthy and R. Velmurugan, The effect of moisture content on the tensile behaviour of polyamide 6 nanocomposites, Proceedings of the Institution of Mechanical Engineers – Part L, 224 (2010) 173-176.

DOI: 10.1243/14644207jmda316

Google Scholar

[10] ASTM International, ASTM D638-08 Standard Test Method for Tensile Properties of Plastics, (2008).

Google Scholar

[11] P.E. Bretz, R.W. Hertzberg and J.S. Manson, Fatigue crack propagation in crystalline polymers: effect of moisture in nylon 66, Journal of Material Science, 14 (1979) 2482–2492.

DOI: 10.1007/bf00737039

Google Scholar

[12] G.M. Wyzgoski and E.G. Novak, Stress cracking of nylon polymers in aqueous salt solutions, Part 1 Stress-rupture behaviour, Journal of Material Science, 22 (1987) 1707–1714.

DOI: 10.1007/bf01132396

Google Scholar

[13] P. Dunn and F.G. Sansom, The stress cracking of polyamides by metal salts. Part I. Metal Halides, Journal of Material Science, 13 (1969) 1641–1655.

DOI: 10.1002/app.1969.070130806

Google Scholar

[14] Normenausschuss Kunststoffe (FNK), DIN EN ISO 527-2 Kunststoffe - Bestimmung der Zugeigenschaften - Teil 2: Prüfbedingungen für Form- und Extrusionsmassen, (2010).

DOI: 10.31030/1860304

Google Scholar

[15] Normenausschuss Kunststoffe (FNK), DIN EN ISO 62 Kunststoffe - Bestimmung der Wasseraufnahme, (2008).

Google Scholar

[16] E. Haibach, Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung, third ed., Springer, Berlin, (2006).

Google Scholar

[17] A. Vallés-Lluch, W. Camacho, A. Ribes-Greus, and S. Karlsson, Influence of Water on the Viscoelastic Behavior of Recycled Nylon 6. 6., Journal of Applied Polymer Science, 85 (2002) 2211–2218.

DOI: 10.1002/app.10838

Google Scholar