The Evaluation of Thermoplastic Precursors for C/C-SiC Manufactured by Liquid Silicon Infiltration (LSI)

Article Preview

Abstract:

C/C-SiC composites, fabricated by the Liquid Silicon Infiltration process (LSI), typically use phenolic resin-based thermosets as carbon precursors. In contrast to this, two different thermoplastics (Polyetheretherketone PEEK and Polyetherimide PEI) were examined for their suitability as carbon precursors for C/C-SiC composites. The carbon fiber surfaces were pretreated between 400 °C and 800 °C in nitrogen atmosphere to modify the fiber/matrix bonding. The microstructures of the materials show an increasing SiC content with increasing fiber pretreatment temperature. The flexural strength of the resulting material was determined by 4-point-bending tests.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

232-239

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Krenkel, B. Heidenreich, R. Renz, C/C-SiC Composites for Advanced Friction Systems, Adv. Eng. Mater. 4 (2002) 427–436.

DOI: 10.1002/1527-2648(20020717)4:7<427::aid-adem427>3.0.co;2-c

Google Scholar

[2] H. Abu El-Hija, W. Krenkel, S. Hugel, Development of C/C-SiC Brake Pads for High-Performance Elevators, Int J Applied Ceramic Technology 2 (2005) 105–113.

DOI: 10.1111/j.1744-7402.2005.02012.x

Google Scholar

[3] Robert B. Sandor, Polybenzimidazole (PBI) as a matrix resin precursor for carbon/carbon composites, Sampe Quaterly (1991) 23–28.

Google Scholar

[4] P.D. Matzinos, J.W. Patrick, A. Walker, Coal-tar pitch as a matrix precursor for 2-D C/C composites, Carbon 34 (1996) 639–644.

DOI: 10.1016/0008-6223(96)00018-8

Google Scholar

[5] A. Centeno, C. Blanco, R. Santamaría, M. Granda, R. Menéndez, Further studies on the use of Raman spectroscopy and X-ray diffraction for the characterisation of TiC-containing carbon–carbon composites, Carbon 50 (2012) 3240–3246.

DOI: 10.1016/j.carbon.2011.11.042

Google Scholar

[6] A. Centeno, R. Santamaría, M. Granda, R. Menéndez, C. Blanco, Improvement of thermal conductivity in 2D carbon–carbon composites by doping with TiC nanoparticles, Materials Chemistry and Physics 122 (2010) 102–107.

DOI: 10.1016/j.matchemphys.2010.02.072

Google Scholar

[7] V. Liedtke, K.J. Hüttinger, Mesophase pitches as matrix precursor of carbon fiber reinforced carbon: I. Mesophase pitch preparation and characterization, Carbon 34 (1996) 1057–1066.

DOI: 10.1016/0008-6223(96)00055-3

Google Scholar

[8] L.H. Perng, C.J. Tsai, Y.C. Ling, Mechanism and kinetic modelling of PEEK pyrolysis by TG/MS, Polymer 40 (1999) 7321–7329.

DOI: 10.1016/s0032-3861(99)00006-3

Google Scholar

[9] H. Farong, W. Xueqiu, L. Shijin, The thermal stability of polyetherimide, Polymer Degradation and Stability 18 (1987) 247–259.

DOI: 10.1016/0141-3910(87)90005-x

Google Scholar

[10] S. Carroccio, C. Puglisi, G. Montaudo, Thermal degradation mechanisms of polyetherimide investigated by direct pyrolysis mass spectrometry, Macromol. Chem. Phys. 200 (1999) 2345–2355.

DOI: 10.1002/(sici)1521-3935(19991001)200:10<2345::aid-macp2345>3.0.co;2-t

Google Scholar

[11] L.M. Manocha, E. Yasuda, Y. Tanabe, S. Kimura, Effect of carbon fiber surface-treatment on mechanical properties of C/C composites, Carbon 26 (1988) 333–337.

DOI: 10.1016/0008-6223(88)90224-2

Google Scholar

[12] S.R. Dhakate, O.P. Bahl, Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT, Carbon 41 (2003) 1193–1203.

DOI: 10.1016/s0008-6223(03)00051-4

Google Scholar

[13] S.P. Appleyard, B. Rand, The effect of fibre–matrix interactions on structure and property changes during the fabrication of unidirectional carbon/carbon composites, Carbon 40 (2002) 817–834.

DOI: 10.1016/s0008-6223(01)00204-4

Google Scholar

[14] U. Zielke, K.J. Hüttinger, W.P. Hoffman, Surface oxidized carbon fibers: II. Chemical modification, Carbon 34 (1996) 999–1005.

DOI: 10.1016/0008-6223(96)00033-4

Google Scholar

[15] U. Zielke, K.J. Hüttinger, W.P. Hoffman, Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon 34 (1996) 983–998.

DOI: 10.1016/0008-6223(96)00032-2

Google Scholar

[16] U. Zielke, K.J. Hüttinger, W.P. Hoffman, Surface-oxidized carbon fibers: III. Characterization of carbon fiber surfaces by the work of adhesion/pH diagram, Carbon 34 (1996) 1007–1013.

DOI: 10.1016/0008-6223(96)00034-6

Google Scholar

[17] U. Zielke, K.J. Hüttinger, W.P. Hoffman, Surface-oxidized carbon fibers: IV. Interaction with high-temperature thermoplastics, Carbon 34 (1996) 1015–1026.

DOI: 10.1016/0008-6223(96)00035-8

Google Scholar

[18] H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Third International Conference on Carbon Black 40 (2002) 145–149.

DOI: 10.1016/s0008-6223(01)00165-8

Google Scholar

[19] M. Voll, H.P. Boehm, Basische oberflächenoxide auf kohlenstoff—II. Stöchiometrie und kinetik der bildungsreaktion; thermischer abbau, Carbon 8 (1970) 741–752.

DOI: 10.1016/0008-6223(70)90099-0

Google Scholar

[20] R. Phillips, F.J. Vastola, Walker Jr. P. L., The thermal decomposition of surface oxides formed on Graphon, Carbon 8 (1970) 197–203.

DOI: 10.1016/0008-6223(70)90114-4

Google Scholar