[1]
M.W. Barsoum, D. Brodkin, T. El-Raghy, Layered machinable ceramics for high temperature applications, Scripta Materialia. 36(5) (1997) 535-541.
DOI: 10.1016/s1359-6462(96)00418-6
Google Scholar
[2]
M.W. Barsoum and T. El-Raghy, The MAX phases: Unique new carbide and nitride materials: Ternary ceramics are soft and machinable, yet heat-tolerant, strong and lighweight, American Scientist. 89(4) (2001) 334-343.
DOI: 10.1511/2001.28.736
Google Scholar
[3]
M.W. Barsoum and M. Radovic, Mechanical Properties of the MAX Phases, Encyclopedia of Materials: Science and Technology. Publisher Elsevier., Oxford, 2004, pp.1-16.
DOI: 10.1016/b0-08-043152-6/01931-8
Google Scholar
[4]
S.R. Kulkarni and A.V.D.K. -H. Wu, Synthesis of Ti2AlC by spark plasma sintering of TiAl–carbon nanotube powder mixture, Journal of Alloys and Compounds. 490(1–2) (2010) 155-159.
DOI: 10.1016/j.jallcom.2009.10.085
Google Scholar
[5]
W.B. Zhou et al., Rapid synthesis of Ti2AlC by spark plasma sintering technique, Materials Letters. 59(1) (2005) 131-134.
DOI: 10.1016/j.matlet.2004.07.052
Google Scholar
[6]
O. Wilhelmsson et al., Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering, Applied Physics Letters. 85(6) (2004) 1066-1068.
DOI: 10.1063/1.1780597
Google Scholar
[7]
W. Garkas, Herstellung und Charakterisierung von Schichten aus MAX-Phasen auf Ti-Basis für den Schutz hochbelasteter Verdichterkomponenten. Publisher Dr. Hut., Munich, Germany, 2012, pp.47-56.
Google Scholar
[8]
W. Garkas, C. Leyens, A. Flores-Renteria, Synthesis and characterization of Ti2AlC and Ti2AlN MAX phase coatings manufactured in an industrial-size coater, Advanced Materials Research. 89-91 (2010) 208-213.
DOI: 10.4028/www.scientific.net/amr.89-91.208
Google Scholar
[9]
P.O.Å. Persson et al., Epitaxial Ti2AlN(0001) thin film deposition by dual-target reactive magnetron sputtering, Acta Materialia. 55(13) (2007) 4401-4407.
DOI: 10.1016/j.actamat.2007.04.006
Google Scholar
[10]
M. Beckers et al., Phase stability of epitaxially grown Ti2AlN thin films, Applied Physics Letters. 89(7) (2006) 074101-1.
DOI: 10.1063/1.2335681
Google Scholar
[11]
M. Fröhlich, Investigations on the Oxidation Behavior of MAX-Phase Based Ti2AlC Coatings on γ-TiAl, Strategic Materials and Computational Design, John Wiley & Sons, Inc. 31 (2010) 161-169.
DOI: 10.1002/9780470944103.ch16
Google Scholar
[12]
Y. Yang et al., Formation of Ti2AlN phase after post-heat treatment of Ti–Al–N films deposited by pulsed magnetron sputtering, Surface and Coatings Technology. 206(10) (2012) 2661-2666.
DOI: 10.1016/j.surfcoat.2011.11.013
Google Scholar
[13]
J. Rosén et al., Deposition of epitaxial Ti2AlC thin films by pulsed cathodic arc, Journal of Applied Physics. 101(5) (2007) 056101-1-056101-2.
DOI: 10.1063/1.2709571
Google Scholar
[14]
T. Cong, M.F. Yan. and R.L. Liu, Multiphase films bearing Ti2AlN by pulse plasma hollow cathode nitriding, Surface Engineering. 29(5) (2013) 336-341.
DOI: 10.1179/1743294413y.0000000124
Google Scholar
[15]
S. Rech et al., Cold-spray deposition of Ti2AlC coatings, Vacuum. 94(0) (2013) 69-73.
Google Scholar
[16]
J. Frodelius et al., Ti2AlC coatings deposited by High Velocity Oxy-Fuel spraying, Surface and Coatings Technology. 202(24) (2008) 5976-5981.
DOI: 10.1016/j.surfcoat.2008.06.184
Google Scholar
[17]
M. Sonestedt et al., Microstructure of high velocity oxy-fuel sprayed Ti2AlC coatings, Journal of Materials Science. 45(10) (2010) 2760-2769.
DOI: 10.1007/s10853-010-4263-4
Google Scholar
[18]
R. Trache et al., Thermally sprayed Ti3SiC2 and Ti2AlC MAX-phase coatings, Proceeding of the International Thermal Spray Conference ITSC, Busan, Republic of Korea, Publisher ASM international., 2013, pp.74-78.
Google Scholar
[19]
D.J. Tallman, B. Anasori, M.W. Barsoum, A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Materials Research Letters. 1(3) (2013) 115-125.
Google Scholar
[20]
X.H. Wang and Y.C. Zhou, High-temperature oxidation behavior of Ti2AlC in air, Oxidation of Metals. 59(3-4) (2003) 303-320.
Google Scholar
[21]
Q.M. Wang et al., Oxidation behaviour of Ti–Al–C films composed mainly of a Ti2AlC phase, Corrosion Science. 53(9) (2011) 2948-2955.
DOI: 10.1016/j.corsci.2011.05.033
Google Scholar
[22]
J. Frodelius et al., Phase stability and initial low-temperature oxidation mechanism of Ti2AlC thin films. Journal of the European Ceramic Society. 33(2) (2013) 375-382.
DOI: 10.1016/j.jeurceramsoc.2012.09.003
Google Scholar
[23]
H.J. Yang et al., High temperature healing of Ti2AlC: On the origin of inhomogeneous oxide scale. Scripta Materialia. 65(2) (2011) 135-138.
DOI: 10.1016/j.scriptamat.2011.03.031
Google Scholar
[24]
B. Cui, D.D. Jayaseelan, and W.E. Lee, Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics, Acta Materialia. 59(10) (2011) 4116-4125.
DOI: 10.1016/j.actamat.2011.03.035
Google Scholar
[25]
W.K. Pang et al., Oxidation characteristics of Ti3AlC2, Ti3SiC2 and Ti2AlC, Advances in Science and Technology of Mn+1AXn Phases. Woodhead Publishing., Cmabridge UK, 2012 pp.289-322.
DOI: 10.1533/9780857096012.289
Google Scholar
[26]
Q.M. Wang et al., Fabrication and oxidation behavior of Cr2AlC coating on Ti6242 alloy, Surface and Coatings Technology. 204(15) (2010) 2343-2352.
DOI: 10.1016/j.surfcoat.2010.01.002
Google Scholar
[27]
M. Fröhlich, Investigations on the oxidation behaviour of MAX-phase based Ti2AlC coatings on γ-TiAl, oral presentation in 34th International Conference on Advanced Ceramics and Composites (ICACC), Daytona Beach, Florida, (2010).
Google Scholar
[28]
Q.M. Wang et al., Improving the high-temperature oxidation resistance of a β–γ TiAl alloy by a Cr2AlC coating, Corrosion Science. 52(11) (2010) 3793-3802.
DOI: 10.1016/j.corsci.2010.07.031
Google Scholar
[29]
Q.M. Wang et al., Oxidation behaviour of Ti2AlN films composed mainly of nanolaminated MAX phase, Journal of Nanoscience and Nanotechnologie JNN. 11 (10) (2011) 8959-8966.
DOI: 10.1166/jnn.2011.3504
Google Scholar
[30]
Q.M. Wang et al., Oxidation behaviour of a Ti2AlN MAX-phase coating, IOP Conf. Series: Materials Science and Engineering 18 (2011) 082025.
Google Scholar
[31]
B. Huneau et al., Experimental Investigation in the Quaternary Systems Ti-Ni-Al-N and Ti-Ni-Al-O, Journal of Solid State Chemistry. 155(1) (2000) 71-77.
DOI: 10.1006/jssc.2000.8893
Google Scholar
[32]
M. Göbel, A. Rahmel, and M. Schütze, The isothermal-oxidation behavior of several nickel-base single-crystal superalloys with and without coatings, Oxidation of Metals. 39(3-4) (1993) 231-261.
DOI: 10.1007/bf00665614
Google Scholar
[33]
B. Wang et al., Interdiffusion Behavior of Ni–Cr–Al–Y Coatings Deposited by Arc-Ion Plating, Oxidation of Metals. 56(1-2) (2001) 1-13.
Google Scholar
[34]
C. Leyens, U. Schulz, K. Fritscher, Oxidation and lifetime of PYSZ and CeSZ coated Ni-base substrates with MCrAlY bond layers, Materials at High Temperatures. 20(4) (2003) 475-480.
DOI: 10.1179/mht.2003.055
Google Scholar
[35]
Y. Zhou and Z. Sun, Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramics, Physical Review B. 61(19) (2000) 12570.
Google Scholar
[36]
H. Högberg et al., Growth and characterization of MAX-phase thin films, Surface and Coatings Technology. 193 (2005) 6-10.
Google Scholar
[37]
M. Magnuson et al., Bonding mechanism in the nitrides Ti2AlN and TiN: An experimental and theoretical investigation, Physical Review B. 76(19) (2007) 195127.
Google Scholar
[38]
C. Bruns and M. Schütze, Investigation of the Mechanical Properties of Oxide Scales on Nickel and TiAl, Oxidation of Metals. 55(1-2) (2001) 35-68.
Google Scholar