Preparation of Polymer-Derived Ceramic Coatings by Dip-Coating

Article Preview

Abstract:

Polysilazane-based coatings were prepared on dense and porous substrates by dip-coating. Both the pure, liquid polymer and polymer solutions in cyclohexane were investigated. Relevant properties of the coating solutions, including rheological properties and surface tension, were determined and used to predict the resulting layer thickness as a function of dip-coating parameters on dense borosilicate glass substrates. A good correlation between existing model (Landau and Levich) and experiment was found for the pure polymer. In the presence of a solvent, evaporation phenomena led to a predicted coating thickness that is much less than the experimental value for all dip coating withdrawal spends. The introduction of a correction factor was found to adequately describe the deviation. In case of porous substrates, the coating thickness could not be predicted using the model due to infiltration of the base structure, resulting in an interpenetrating ceramic composite layer after pyrolytic conversion of the preceramic polymer compound. When preparing polymer-derived ceramic films on porous base materials, e.g. for membrane applications, this phenomenon has to be taken into account.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

645-652

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Clarke, S.R. Phillpot, Thermal barrier coating materials, Mater. Today 8 (2005), 22-29.

Google Scholar

[2] K.N. Lee, Current status of environmental barrier coatings for Si-Based ceramics, Surf. Coat. Technol. 133–134 (2000), 1-7.

Google Scholar

[3] K. Li, Ceramic Membranes for Separation and Reaction, Wiley, Chichester, (2007).

Google Scholar

[4] T. Konegger, J. Torrey, O. Flores, T. Fey, B. Ceron-Nicolat, G. Motz, F. Scheffler, M. Scheffler, P. Greil, R.K. Bordia, Ceramics for Sustainable Energy Technologies with a Focus on Polymer Derived Ceramics, in: A.K. Agarwal, A. Pandey, A.K. Gupta, S.K. Aggarwal, A. Kushari (Eds. ), Novel Combustion Concepts for Sustainable Energy Development, Springer, India, 2014, pp.501-533.

DOI: 10.1007/978-81-322-2211-8_22

Google Scholar

[5] P. Colombo, R. Riedel, G.D. Sorarù, H. -J. Kleebe (Eds. ) Polymer derived Ceramics: From Nano-Structure to Applications. DEStech Publications, Inc., Lancaster, (2010).

Google Scholar

[6] J. Bill, D. Heimann, Polymer-derived ceramic coatings on C/C-SiC composites, J. Eur. Ceram. Soc. 16 (1996), 1115-1120.

DOI: 10.1016/0955-2219(96)00025-8

Google Scholar

[7] J.D. Torrey, R.K. Bordia, C.H. Henager Jr, Y. Blum, Y. Shin, W.D. Samuels, Composite polymer derived ceramic system for oxidizing environments, J. Mater. Sci. 41 (2006), 4617-4622.

DOI: 10.1007/s10853-006-0242-1

Google Scholar

[8] J.D. Torrey, R.K. Bordia, Phase and microstructural evolution in polymer-derived composite systems and coatings, J. Mater. Res. 22 (2007), 1959-(1966).

DOI: 10.1557/jmr.2007.0246

Google Scholar

[9] M. Günthner, T. Kraus, W. Krenkel, G. Motz, A. Dierdorf, D. Decker, Particle-Filled PHPS Silazane-Based Coatings on Steel, Int. J. Appl. Ceram. Technol. 6 (2009), 373-380.

DOI: 10.1111/j.1744-7402.2008.02346.x

Google Scholar

[10] M. Günthner, A. Schütz, U. Glatzel, K. Wang, R.K. Bordia, O. Greißl, W. Krenkel, G. Motz, High performance environmental barrier coatings, Part I: Passive filler loaded SiCN system for steel, J. Eur. Ceram. Soc. 31 (2011), 3003-3010.

DOI: 10.1016/j.jeurceramsoc.2011.05.027

Google Scholar

[11] K. Wang, M. Günthner, G. Motz, R.K. Bordia, High performance environmental barrier coatings, Part II: Active filler loaded SiOC system for superalloys, J. Eur. Ceram. Soc. 31 (2011), 3011-3020.

DOI: 10.1016/j.jeurceramsoc.2011.05.047

Google Scholar

[12] Y. Iwamoto, K. Sato, T. Kato, T. Inada, Y. Kubo, A hydrogen-permselective amorphous silica membrane derived from polysilazane, J. Eur. Ceram. Soc. 25 (2005), 257-264.

DOI: 10.1016/j.jeurceramsoc.2004.08.007

Google Scholar

[13] B. Elyassi, M. Sahimi, T.T. Tsotsis, Silicon carbide membranes for gas separation applications, J. Membr. Sci. 288 (2007), 290-297.

DOI: 10.1016/j.memsci.2006.11.027

Google Scholar

[14] A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces, Wiley, New York, (1997).

Google Scholar

[15] C. -C. Tsai, Y. Gu, K.G. Kornev, Wetting of nanofiber yarns, Colloids Surf., A 459 (2014), 22-30.

DOI: 10.1016/j.colsurfa.2014.06.037

Google Scholar

[16] H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, (1989).

Google Scholar

[17] L. Landau, B. Levich, Dragging of a Liquid by a Moving Plate, Acta Physicochim. URSS 17 (1942), 42-54.

Google Scholar

[18] K. Jittavanich, C.B. Clemons, K.L. Kreider, M. Aljarrah, E. Evans, G.W. Young, Modeling, simulation and fabrication of coated structures using the dip coating technique, Chem. Eng. Sci. 65 (2010), 6169-6180.

DOI: 10.1016/j.ces.2010.09.001

Google Scholar

[19] P. Yimsiri, M.R. Mackley, Spin and dip coating of light-emitting polymer solutions: Matching experiment with modelling, Chem. Eng. Sci. 61 (2006), 3496-3505.

DOI: 10.1016/j.ces.2005.12.018

Google Scholar

[20] T. Konegger, R. Potzmann, M. Puchberger, A. Liersch, Matrix-filler interactions in polysilazane-derived ceramics with Al2O3 or ZrO2 fillers, J. Eur. Ceram. Soc. 31 (2011), 3021-3031.

DOI: 10.1016/j.jeurceramsoc.2011.07.015

Google Scholar

[21] J. Hedlund, F. Jareman, A. -J. Bons, M. Anthonis, A masking technique for high quality MFI membranes, J. Membr. Sci. 222 (2003), 163-179.

DOI: 10.1016/s0376-7388(03)00285-0

Google Scholar