Anodic Oxidation of AMCs: Influence of Process Parameters on Coating Formation

Article Preview

Abstract:

Aluminium matrix composites (AMCs) consisting of high-strength, age-hardenable aluminium alloys and homogeneously dispersed hard particles open up new possibilities in designing light-weight material based security related structures. The susceptibility of the matrix alloy to selective corrosion can be reduced significantly by anodic oxidation. A powder-metallurgical processed alloy AlCu4MgMn with hard particles and a commercial wrought alloy for reference were used for the investigations.In order to control the microstructure of anodic aluminium oxide (AAO) formed on AMCs, it is necessary to understand the formation mechanism and the influencing parameters. Therefore in a first run, the anodizing behaviour of matrix alloy was separated from the behaviour of hard particles. The AAO coatings show small growth rates on the matrix and the reference alloy accompanied by a complex pore structure which differs from the ordered vertical pore structure on pure aluminium. Depending on the type and the size as well as the anodizing parameters, the particles are either incorporated into the AAO coating unchanged or partly resp. completely oxidized. The AAO microstructure changes significantly in dependence of the anodizing parameters. It is shown that a technically relevant coating thickness can be achieved on AMCs by choosing appropriate process parameters.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

636-644

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Podlesak, S. Siebeck, S. Mücklich; M. Hockauf; L.W. Meyer, B. Wielage, D. Weber, Pulvermetallurgische Erzeugung von SiC- und Al2O3-verstärkten Al-Cu-Legierungen, Materialwissenschaft und Werkstofftechnik 40 (2009), 9, 500-505.

DOI: 10.1002/mawe.200900495

Google Scholar

[2] R.P. Wie, C. -M. Liao, M. Gao, A Transmission Electron Microscopy Study of Constituent-Particle-Induced Corrosion in 7075-T6 and 2024-T3 Aluminium Alloys, Metallurgical and Materials Transactions A 29A (1998), 1153-1160.

DOI: 10.1007/s11661-998-0241-8

Google Scholar

[3] B. Bobic, S. Mitrovic, M. Babic, I. Bobic, Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate, Tribology in industry 32 (2010), 1, 3-11.

Google Scholar

[4] Y. Ma, X. Zhou, G.E. Thompson, M. Curioni, P. Skeldon, X. Zhang, Z. Sun, C. Luo, Z. Tang, F. Lu, Anodic film growth on Al-Li-Cu alloy AA2099-T8, Electrochimica Acta 80 (2012), 148-159.

DOI: 10.1016/j.electacta.2012.06.126

Google Scholar

[5] M. Curioni, F. Roeth, S.J. Garcia-Vergara, T. Hashimoto, P. Skeldon, G.E. Thompson, J. Ferguson, Enrichment, incorporation and oxidation of copper during anodizing of aluminium-copper alloys, Surface and Interface Analysis 42 (2010), 234-240.

DOI: 10.1002/sia.3139

Google Scholar

[6] M. Händel, D. Nickel, G. Alisch, T. Lampke, Hartanodisieren einer grob- und ultrafeinkörnigen Aluminium-Kupfer-Legierung mit inkorperierten Aluminiumoxid- bzw. Siliziumkarbid-Partikeln, Materialwissenschaft und Werkstofftechnik 41 (2010).

DOI: 10.1002/mawe.201000661

Google Scholar

[7] S. Nehrkorn, M. Händel, D. Dietrich, H. Podlesak, D. Nickel, B. Wielage, T. Lampke, A hardness–microstructure correlation study of anodized powder-metallurgical Al-Cu alloy composites, Surface & Coatings Technology 242 (2014), 118–124.

DOI: 10.1016/j.surfcoat.2014.01.028

Google Scholar

[8] C. He, Q. Cai, Effect of Current Density on Morphology and Corrosion Resistance of Anodized Coating on SiCp/2024 Al Composite, Materials Science Forum 546-549 (2007), 661-666.

DOI: 10.4028/www.scientific.net/msf.546-549.661

Google Scholar

[9] P.P. Trzaskoma, The Effect of Anodic Coatings on the Pitting of Silicon Cabide/ Aluminium Metal Matrix Composites, Proceedings - The Electrochemical Society 86-11 (1986), 171-180.

Google Scholar

[10] S. Wagner, H. Podlesak, S. Siebeck, D. Nestler,; M.F. -X. Wagner, B. Wielage, M. Hockauf, Einfluss von ECAP und Wärmebehandlung auf Mikrostruktur und mechanische Eigenschaften einer SiC-verstärkten AlCu-Legierung, Materialwissenschaft und Werkstofftechnik41 (2010).

DOI: 10.1002/mawe.201000656

Google Scholar

[11] M. Saenz de Miera, M. Curioni, P. Skeldon, G.E. Thompson, Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues, Corrosion Science, 50 (2008), 3410-3415.

DOI: 10.1016/j.corsci.2008.09.019

Google Scholar

[12] J. Rasmussen, Die technische Pulsanodisation – Teil 1: Vickershärte der Oxidschichten bei erhöhter Anodisiertemperatur, Galvanotechnik, 85 (1994), 5, 1477-1484.

Google Scholar