Preparing of Heatable, CNT-Functionalized Polymer Membranes for Application in Textile Composites

Article Preview

Abstract:

The electrically induced heating of textile composite materials is already applied in the clothing and outdoor use. However, making thin, flexible and washable heating layers remains a challenge. Based on various polymers thin electrically heatable polymer sheets were developed using multi-walled carbon nanotubes as electrically conductive fillers in silicone, polyurethane as well as polyvinylchloride. To prepare the membranes a knife coating process was applied. The viscosity of the polymer masses, the particle alignment, the percolation as well as the electrically and heating properties of the membranes were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

67-74

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. -J. Mair, S. Roth, Elektrisch leitende Kunststoffe, 2nd extended edition, Hanser, Munich 1989, 253–263.

Google Scholar

[2] J. Heinze, Electronically conducting polymers, in: Steckhan, Eberhard, Electrochemistry IV. Topics in Current Chemistry. Vol. 152, Springer, Berlin/Heidelberg, 1990, 1–47.

DOI: 10.1007/bfb0034363

Google Scholar

[3] A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J. F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler, Phys. Rev. B 53 (1996) 6209.

DOI: 10.1103/physrevb.53.6209

Google Scholar

[4] W. Bauhofer, J. Z. Kovac, A review and analysis of electrical percolation in carbon nanotube polymer composites, Compos. Sci. Technol. 69 (2009) 1486-1498.

DOI: 10.1016/j.compscitech.2008.06.018

Google Scholar

[5] Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, A review and analysis of electrical percolation in carbon nanotube polymer composites, Progress Polym. Sci. 35 (2010) 357-401.

DOI: 10.1016/j.progpolymsci.2009.09.003

Google Scholar

[6] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35 (2010) 1350-1375.

DOI: 10.1016/j.progpolymsci.2010.07.005

Google Scholar

[7] F. H. Gojny, M. H. G. Wichmann, U. Köpke, B. Fiedler, K. Schulte, Carbon Nanotube-reinforced epoxy-composites – Enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Tech. 64 (2004) 2363-2371.

DOI: 10.1016/j.compscitech.2004.04.002

Google Scholar

[8] R. Socher, B. Krause, S. Hermasch, R. Wursche, P. Pötschke, Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black, Compos. Sci. Techn. 71 (2011) 1053-1059.

DOI: 10.1016/j.compscitech.2011.03.004

Google Scholar

[9] J. Sumfleth, X. C. Adroher, K. Schulte, Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black, J. Mater. Sci. 44 (2009) 3241-3247.

DOI: 10.1007/s10853-009-3434-7

Google Scholar