[1]
M. Chen, A brief overview of bulk metallic glasses, NPG Asia Mater 3 (2011) 82–90.
DOI: 10.1038/asiamat.2011.30
Google Scholar
[2]
E.S. Park, D.H. Kim, Design of Bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review, Met. Mater. Int. 11 (2005) 19–27.
DOI: 10.1007/bf03027480
Google Scholar
[3]
W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports 44 (2004) 45–89.
DOI: 10.1016/j.mser.2004.03.001
Google Scholar
[4]
M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Progress in Materials Science 55 (2010) 759–839.
DOI: 10.1016/j.pmatsci.2010.04.002
Google Scholar
[5]
T. Zhang, A. Inoue, New Bulk Glassy Ni-Based Alloys with High Strength of 3000 MPa, Materials Transactions 43 (2002) 708–711.
DOI: 10.2320/matertrans.43.708
Google Scholar
[6]
A. Inoue, B.L. Shen, C.T. Chang, Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000MPa, Intermetallics 14 (2006) 936–944.
DOI: 10.1016/j.intermet.2006.01.038
Google Scholar
[7]
A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nature materials 2 (2003) 661–663.
DOI: 10.1038/nmat982
Google Scholar
[8]
W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull. 24 (1999) 42–56.
DOI: 10.1557/s0883769400053252
Google Scholar
[9]
S. Scudino, K.B. Surreddi, S. Sager, M. Sakaliyska, J.S. Kim, W. Löser, J. Eckert, Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites, J Mater Sci 43 (2008) 4518–4526.
DOI: 10.1007/s10853-008-2647-5
Google Scholar
[10]
P. Yu, K. Kim, J. Das, F. Baier, W. Xu, J. Eckert, Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite, Scripta Materialia 54 (2006) 1445–1450.
DOI: 10.1016/j.scriptamat.2006.01.001
Google Scholar
[11]
M. Lee, D. Bae, W. Kim, D. Kim, Ni-Based Refractory Bulk Amorphous Alloys with High Thermal Stability, Materials Transactions 44 (2003) 2084–(2087).
DOI: 10.2320/matertrans.44.2084
Google Scholar
[12]
M. Lee, Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process, Scripta Materialia 50 (2004) 1367–1371.
DOI: 10.1016/j.scriptamat.2004.02.038
Google Scholar
[13]
K.A. Weidenmann, R. Tavangar, L. Weber, Mechanical behaviour of diamond reinforced metals, Materials Science and Engineering: A 523 (2009) 226–234.
DOI: 10.1016/j.msea.2009.05.069
Google Scholar
[14]
M. Merzkirch, C. Blümel, R. Rössler, K.G. Schell, E.C. Bucharsky, K.A. Weidenmann, Manufacturing and Characterization of Interpenetrating SiC Lightweight Composites, Procedia CIRP 18 (2014) 102–107.
DOI: 10.1016/j.procir.2014.06.115
Google Scholar
[15]
DIN 50106: Testing of metallic materials; compression test (1978).
Google Scholar
[16]
N. Chawla, C. Andres, J. Jones, J. Allison, Cyclic Stress-Strain Behavior of Particle Reinforced Metal Matrix Composites, Scripta Materialia 38 (1998) 1595–1600.
DOI: 10.1016/s1359-6462(98)00067-0
Google Scholar
[17]
S.F. Corbin, D.S. Wilkinson, The influence of particle distribution on the mechanical response of a particulate metal matrix composite, Acta Metallurgica et Materialia 42 (1994) 1311–1318.
DOI: 10.1016/0956-7151(94)90147-3
Google Scholar
[18]
DIN EN 1706: Aluminum and aluminum alloys - castings - chemical composition and mechanical properties (2013).
Google Scholar
[19]
E. Müller, Handbuch der zerstörungsfreien Materialprüfung, Oldenbourg-Verlag, München/Wien, (1970).
DOI: 10.1002/mawe.19720030112
Google Scholar
[20]
W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys. 274 (1889) 573–587.
DOI: 10.1002/andp.18892741206
Google Scholar
[21]
A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. angew. Math. Mech. 9 (1929) 49–58.
DOI: 10.1002/zamm.19290090104
Google Scholar
[22]
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65 (1952) 349–354.
DOI: 10.1088/0370-1298/65/5/307
Google Scholar