Innovative Aluminum Based Metallic Glass Particle Reinforced MMCs Produced by Gas Pressure Infiltration

Article Preview

Abstract:

Over the last years, new alloys were developed to create metallic glasses showing high crystallization temperatures. Such metallic glasses generally can be embedded into other materials when processing temperatures are lower than crystallization temperatures. As recent studies show, feasible crystallization temperatures may exceed the melting point of common metals and fabrication of metallic glass particle reinforced MMCs is now not only possible by powder metallurgical methods but also by processes using melt infiltration. Hence, these metallic glasses offer a high potential for use as reinforcements in a lightweight metal matrix such as aluminum: By incorporation of metallic glass structures into a ductile matrix, it is possible to utilize its outstanding advantages like high strength and elastic strain limit while circumventing its negative properties like brittleness.The particle reinforced composites in this contribution were produced by gas pressure infiltration. This process includes melt infiltration of a particle filled mold using pressurized gas. To keep a sufficient separation between processing temperature and crystallization temperature, the metallic glass Ni60Nb20Ta20 (Tx = 721 °C) and the eutectic aluminum alloy AlSi12 with a low melting point (Tm = 580 °C) as matrix metal were selected for process. After infiltration, the fabricated MMCs were investigated by micro computed tomography (µCT) to analyze the particle distribution within the composite. Furthermore, mechanical tests and elastic analysis using ultrasound spectroscopy were performed to classify its properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

101-108

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Chen, A brief overview of bulk metallic glasses, NPG Asia Mater 3 (2011) 82–90.

DOI: 10.1038/asiamat.2011.30

Google Scholar

[2] E.S. Park, D.H. Kim, Design of Bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review, Met. Mater. Int. 11 (2005) 19–27.

DOI: 10.1007/bf03027480

Google Scholar

[3] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports 44 (2004) 45–89.

DOI: 10.1016/j.mser.2004.03.001

Google Scholar

[4] M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Progress in Materials Science 55 (2010) 759–839.

DOI: 10.1016/j.pmatsci.2010.04.002

Google Scholar

[5] T. Zhang, A. Inoue, New Bulk Glassy Ni-Based Alloys with High Strength of 3000 MPa, Materials Transactions 43 (2002) 708–711.

DOI: 10.2320/matertrans.43.708

Google Scholar

[6] A. Inoue, B.L. Shen, C.T. Chang, Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000MPa, Intermetallics 14 (2006) 936–944.

DOI: 10.1016/j.intermet.2006.01.038

Google Scholar

[7] A. Inoue, B. Shen, H. Koshiba, H. Kato, A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nature materials 2 (2003) 661–663.

DOI: 10.1038/nmat982

Google Scholar

[8] W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, MRS Bull. 24 (1999) 42–56.

DOI: 10.1557/s0883769400053252

Google Scholar

[9] S. Scudino, K.B. Surreddi, S. Sager, M. Sakaliyska, J.S. Kim, W. Löser, J. Eckert, Production and mechanical properties of metallic glass-reinforced Al-based metal matrix composites, J Mater Sci 43 (2008) 4518–4526.

DOI: 10.1007/s10853-008-2647-5

Google Scholar

[10] P. Yu, K. Kim, J. Das, F. Baier, W. Xu, J. Eckert, Fabrication and mechanical properties of Ni–Nb metallic glass particle-reinforced Al-based metal matrix composite, Scripta Materialia 54 (2006) 1445–1450.

DOI: 10.1016/j.scriptamat.2006.01.001

Google Scholar

[11] M. Lee, D. Bae, W. Kim, D. Kim, Ni-Based Refractory Bulk Amorphous Alloys with High Thermal Stability, Materials Transactions 44 (2003) 2084–(2087).

DOI: 10.2320/matertrans.44.2084

Google Scholar

[12] M. Lee, Fabrication of Ni–Nb–Ta metallic glass reinforced Al-based alloy matrix composites by infiltration casting process, Scripta Materialia 50 (2004) 1367–1371.

DOI: 10.1016/j.scriptamat.2004.02.038

Google Scholar

[13] K.A. Weidenmann, R. Tavangar, L. Weber, Mechanical behaviour of diamond reinforced metals, Materials Science and Engineering: A 523 (2009) 226–234.

DOI: 10.1016/j.msea.2009.05.069

Google Scholar

[14] M. Merzkirch, C. Blümel, R. Rössler, K.G. Schell, E.C. Bucharsky, K.A. Weidenmann, Manufacturing and Characterization of Interpenetrating SiC Lightweight Composites, Procedia CIRP 18 (2014) 102–107.

DOI: 10.1016/j.procir.2014.06.115

Google Scholar

[15] DIN 50106: Testing of metallic materials; compression test (1978).

Google Scholar

[16] N. Chawla, C. Andres, J. Jones, J. Allison, Cyclic Stress-Strain Behavior of Particle Reinforced Metal Matrix Composites, Scripta Materialia 38 (1998) 1595–1600.

DOI: 10.1016/s1359-6462(98)00067-0

Google Scholar

[17] S.F. Corbin, D.S. Wilkinson, The influence of particle distribution on the mechanical response of a particulate metal matrix composite, Acta Metallurgica et Materialia 42 (1994) 1311–1318.

DOI: 10.1016/0956-7151(94)90147-3

Google Scholar

[18] DIN EN 1706: Aluminum and aluminum alloys - castings - chemical composition and mechanical properties (2013).

Google Scholar

[19] E. Müller, Handbuch der zerstörungsfreien Materialprüfung, Oldenbourg-Verlag, München/Wien, (1970).

DOI: 10.1002/mawe.19720030112

Google Scholar

[20] W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys. 274 (1889) 573–587.

DOI: 10.1002/andp.18892741206

Google Scholar

[21] A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. angew. Math. Mech. 9 (1929) 49–58.

DOI: 10.1002/zamm.19290090104

Google Scholar

[22] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65 (1952) 349–354.

DOI: 10.1088/0370-1298/65/5/307

Google Scholar