Interface Characterization of Hybrid Composite Extrusions

Article Preview

Abstract:

Through the development of new metal matrix composites, the specific strength and stiffness can be increased above the level of conventional light metal alloys and increase their potential for lightweight applications. The composite extrusion process is a promising manufacturing method for reinforced light metal extrusions. Particularly, the reinforcement with ceramic fibers can increase both the specific strength and stiffness which are essential for lightweight purposes. To exploit the full potential of the reinforcement, the interface of this MMC has to be optimized regarding the load transfer between matrix and fiber and therefore has to offer a strong bonding. In this contribution a hybrid composite is produced by using an Al2O3-fiber/AlMg0.2 composite wire which is embedded in an EN AW-6082 extrusion profile. Both the characterization of the interface and determination of the influence of processing and heat treatment are presented. For that purpose, the composites are characterized qualitatively by metallographic analysis and quantitatively by micro push-out testing of the ceramic fibers prior and after composite extrusion. To investigate the influence of additional heat treatment the state as fabricated, which equals a T4 state of the matrix material, as well as a T6 state with additional solution annealing and artificial ageing are compared. It was found that the extrusion process has a beneficial influence on the microstructure and the mechanical interface properties and therefore confirms applicability of composite extrusion for manufacturing of alumina reinforced profiles. The heat treatment however showed no significant influence on the embedded composite wire and its interface properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

134-141

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Schomäcker, M. Schikorra, M. Kleiner, 4 Years of Research on Composite Extrusion for Continuous Reinforcement of Profiles, 6th Aluminium 2000 World Congress, Florence, (2007).

Google Scholar

[2] A. Klaus, M. Schomäcker, M. Kleiner, First Advances in the Manufacture of Composite Extrusions for Lightweight Constructions, Light Metal Age, Vol. 62 (2004), No. 8, pp.12-21.

Google Scholar

[3] M. Merzkirch, M. Meissner, V. Schulze, K.A. Weidenmann, Tensile behaviour of spring steel wire reinforced EN AW-6082, J. Compos. Mater. (2014) 1-14.

DOI: 10.1177/0021998313517581

Google Scholar

[4] D. Löhe, V. Schulze, C. Fleck, K.A. Weidenmann, Verbundstranggepresste Aluminiummatrixverbunde – Werkstoffauswahl und Charakterisierung ausgewählter Metall-Metall-Systeme, Aluminium 80. Jahrgang 12 (2004) 1374-1378.

Google Scholar

[5] M. Doktor, Production and Characterization of Continuous Reinforced Aluminum Wires, PHD-Thesis, Technische Universität Wien, Institut für Werkstoffkunde und Materialprüfung, Wien, (2000).

Google Scholar

[6] K.A. Weidenmann, M. Schomäcker, E. Kerscher, D. Löhe, M. Kleiner, Composite Extrusion of Aluminum Matrix Specimens Reinforced with Continuous Ceramic Fibers, Light Metal Age (2005) 6-10.

Google Scholar

[7] D. Pietzka, M. Schikorra, A.E. Tekkaya, Embedding of Alumina Reinforcing Elements in the Composite Extrusion Process, Advanced Materials Research 43 (2008) 9-16.

DOI: 10.4028/www.scientific.net/amr.43.9

Google Scholar

[8] C. Dahnke, D. Pietzka, M. Haase, A.E. Tekkaya, Extending the Flexibility in the Composite Extrusion Process, Procedia CIRP, 18 (2014) 33-38.

DOI: 10.1016/j.procir.2014.06.103

Google Scholar

[9] M. Doktor, J.T. Blucher, H.P. Degischer, Continuous fiber reinforced aluminium wires, ICCM-12, Paris, July 5-9, (1999).

Google Scholar

[10] J.T. Blucher, M. Doktor, A New Pressure Infiltration Processs for Continuous Production of Fiber Reinforced MMC Structural Elements, Proceedings of the 30thInternational SAMPE Technical Conference, San Antonio, Texas, Oct. 22-4, (1998).

Google Scholar

[11] B. Moser, A. Rossoll, L. Weber, O. Beffort, A. Mortensen, Transmitted light microscopy of a fibre reinforced metal, Journal of Microscopy, Vol. 209 (2003) 8 -12.

DOI: 10.1046/j.1365-2818.2003.01097.x

Google Scholar

[12] A. Ohl, M. Merzkirch, M. Grigro, B. Butz, K.A. Weidenmann, Präparation von Dünnschliffen aus langfaserverstärkten Verbundwerkstoffen mit Polymer- oder Aluminiummatrizes zur Bestimmung der Grenzflächenscherfestigkeit mittels Push-Out Test, Prakt. Met. Sonderband 41 (2009).

Google Scholar

[13] E.P. Rhyne, J.R. Hellmann, J.M. Galbraith, D.A. Koss, Thin-slice Fiber Pushout And Specimen Bending In Metallic Matrix Composite Tests, Scr. Metall. Mater. 32 (1994).

DOI: 10.1016/0956-716x(95)90835-8

Google Scholar

[14] M. Merzkirch, K.A. Weidenmann, E. Kerscher, D. Löhe, Mechanical Properties of Hybrid Composite Extrusions of an Aluminum-Alumina Wire Reinforced Aluminium Alloy. Proceedings of Materials Science & Technology Conference and Exhibition (MS&T'08), October 5-9, Pittsburgh, 2008, pp.2552-2562.

DOI: 10.4028/www.scientific.net/amr.43.17

Google Scholar

[15] I. Kientzl, Á. Németh, J. Dobránszky, Influence of the infiltration pressure on the properties of MMC wires, Mechanical Engineering 52/1 (2008) 15-18.

DOI: 10.3311/pp.me.2008-1.03

Google Scholar

[16] T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, M. Yoshida, Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method, Composites: Part A 38 (2007) 771-778.

DOI: 10.1016/j.compositesa.2006.09.003

Google Scholar

[17] L.J. Barker, Revealing the Grain Structure of Common Aluminum Alloy Metallographic Specimens, Trans. Amer. Soc. Metals 42 (1950), 347-356.

Google Scholar

[18] F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Pergamon, ISBN: 0-08-041884-8, Oxford, (1996).

Google Scholar

[19] J. R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Handbook Committee, ISBN: 978-0871704962, (1993).

Google Scholar