[1]
E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites, Mater. Sci. Eng., A246 (1998) 221-234.
DOI: 10.1016/s0921-5093(97)00710-7
Google Scholar
[2]
C.G. Aneziris, W. Schärfl, H. Biermann, U. Martin, Energy absorbing TRIP-steel/Mg-PSZ composite - honeycomb structures based on ceramic extrusion at room temperature, Int. J. Appl. Ceram. Technol., 6 (2009) 727-735.
DOI: 10.1111/j.1744-7402.2008.02321.x
Google Scholar
[3]
S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing Mechanism of Mg-PSZ Particles in Highly-Alloyed TRIP Steel, Steel Res. Int., 82 (2011) 1133-1140.
DOI: 10.1002/srin.201100099
Google Scholar
[4]
A. Weiß, H. Gutte, P.R. Scheller, Deformation Induced Martensite Formation and its Effect on Transformation Induced Plasticity (TRIP), Steel Res. Int., 77 (2006) 727-732.
DOI: 10.1002/srin.200606454
Google Scholar
[5]
R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, J. Am. Ceram. Soc., 83 (2000) 461-487.
DOI: 10.1111/j.1151-2916.2000.tb01221.x
Google Scholar
[6]
S. Decker, L. Krüger, S. Richter, S. Martin, U. Martin, Strain-Rate-Dependent Flow Stress and Failure of an Mg-PSZ Reinforced TRIP Matrix Composite Produced by Spark Plasma Sintering, Steel Res. Int., 83 (2012) 521-528.
DOI: 10.1002/srin.201100268
Google Scholar
[7]
C.G. Aneziris, H. Berek, M. Hasterok, H. Biermann, S. Wolf, L. Krüger, Novel TRIP-steel / Mg-PSZ composite-open cell foam structures for energy absorption, Adv. Eng. Mater., 12 (2010) 197-204.
DOI: 10.1002/adem.200900273
Google Scholar
[8]
C. Weigelt, Energy absorbing TRIP-steel/zirconia composite structures based on ceramic extrusion, Dissertation, Technische Universität Bergakademie Freiberg, (2012).
Google Scholar
[9]
N. Travitzky, H. Windsheimer, T. Fey, P. Greil, Preceramic Paper-Derived Ceramics, J. Amer. Ceram. Soc., 91 (2008) 3477-3492.
DOI: 10.1111/j.1551-2916.2008.02752.x
Google Scholar
[10]
T. Schlordt, B. Dermeik, V. Beil, M. Freihart, A. Hofenauer, N. Travitzky, P. Greil, Influence of calendering on the properties of paper-derived alumina ceramics, Ceram. Int., 40 (2013) 4917-4926.
DOI: 10.1016/j.ceramint.2013.10.080
Google Scholar
[11]
C. Kluthe, B. Dermeik, W. Kollenberg, P. Greil, N. Travitzky, Processing, Microstructure and Properties of Paper-Derived Porous Al2O3-Substrates, J. Ceram. Sci. Tech., 03 (2012) 111-118.
Google Scholar
[12]
H. Windsheimer, N. Travitzky, A. Hofenauer, P. Greil, Laminated Object manufacturing of Preceramic-paper-Derived Si-SiC Composites, Adv. Mat., 19 (2007) 4515-4519.
DOI: 10.1002/adma.200700789
Google Scholar
[13]
S.L. Stares, M.C. Fredel, P. Greil, N. Travitzky, Paper-derived β-TCP, Mater. Lett., 98 (2013) 161-163.
DOI: 10.1016/j.matlet.2013.02.021
Google Scholar
[14]
A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, P. Scheller, Temperature Depending Influence of the Martensite Formation on the Mechanical Properties of High-Alloyed Cr-Mn-Ni As-Cast Steels, Steel Res. Int., 82 (2011) 6.
DOI: 10.1002/srin.201000228
Google Scholar
[15]
C. Weigelt, Energy absorbing TRIP-steel/ zirconia composite structures based on ceramic extrusion, Faculty of Mechanical, Process and Energy Engineering, TU Bergakademie Freiberg, 2013, pp.1-195.
Google Scholar
[16]
M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, A. Saatchi, Effect of TIG welding on corrosion behavior of 316L stainless steel, Mater. Lett., 61 (2007) 2343-2346.
DOI: 10.1016/j.matlet.2006.09.008
Google Scholar
[17]
B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, Z.H. Xu, Pitting and stress corrosion cracking behavior in welded austenitic stainless steel, Electrochim. Acta, 50 (2005) 1391-1403.
DOI: 10.1016/j.electacta.2004.08.036
Google Scholar