Novel Metal-Matrix Composites Prepared by Paper Manufacturing Technology

Article Preview

Abstract:

The current contribution deals with metal-matrix composites prepared by paper manufacturing technology. In contrast to conventional techniques, this technology is an energy-and cost-efficient process for the shaping of thin sheets using solid powder mixtures. Conventional and pre-ceramic as well as pre-metallic paper-manufacturing have in common that cellulose (pulp) fibres are loaded with inorganic fillers. The present study is focused on the paper web formation using a metastable austenitic steel powder (16-7-3 %Cr-%Mn-%Ni) and a magnesia partially stabilised zirconia powder as inorganic fillers. The paper web formation was investigated. During filtration of the aqueous fibre-filler suspension the steel particles were incorporated in-between the fibre network and steel clusters were formed. Thus, solid retentions of > 90 wt.% were achieved. Calendering had a positive influence on porosity, bulk density, and tensile strength of the green paper sheets. The development of an optimized debinding process is presented and the microstructural changes as well as phase formations during firing are discussed in response to the residual carbon content. The sintered composites attained ultimate tensile strengths of up to 177 N/ mm2 at a total porosity of 66 %. These metal-matrix composites are promising materials for the shaping of light-weight structures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

117-124

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites, Mater. Sci. Eng., A246 (1998) 221-234.

DOI: 10.1016/s0921-5093(97)00710-7

Google Scholar

[2] C.G. Aneziris, W. Schärfl, H. Biermann, U. Martin, Energy absorbing TRIP-steel/Mg-PSZ composite - honeycomb structures based on ceramic extrusion at room temperature, Int. J. Appl. Ceram. Technol., 6 (2009) 727-735.

DOI: 10.1111/j.1744-7402.2008.02321.x

Google Scholar

[3] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing Mechanism of Mg-PSZ Particles in Highly-Alloyed TRIP Steel, Steel Res. Int., 82 (2011) 1133-1140.

DOI: 10.1002/srin.201100099

Google Scholar

[4] A. Weiß, H. Gutte, P.R. Scheller, Deformation Induced Martensite Formation and its Effect on Transformation Induced Plasticity (TRIP), Steel Res. Int., 77 (2006) 727-732.

DOI: 10.1002/srin.200606454

Google Scholar

[5] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation Toughening in Zirconia-Containing Ceramics, J. Am. Ceram. Soc., 83 (2000) 461-487.

DOI: 10.1111/j.1151-2916.2000.tb01221.x

Google Scholar

[6] S. Decker, L. Krüger, S. Richter, S. Martin, U. Martin, Strain-Rate-Dependent Flow Stress and Failure of an Mg-PSZ Reinforced TRIP Matrix Composite Produced by Spark Plasma Sintering, Steel Res. Int., 83 (2012) 521-528.

DOI: 10.1002/srin.201100268

Google Scholar

[7] C.G. Aneziris, H. Berek, M. Hasterok, H. Biermann, S. Wolf, L. Krüger, Novel TRIP-steel / Mg-PSZ composite-open cell foam structures for energy absorption, Adv. Eng. Mater., 12 (2010) 197-204.

DOI: 10.1002/adem.200900273

Google Scholar

[8] C. Weigelt, Energy absorbing TRIP-steel/zirconia composite structures based on ceramic extrusion, Dissertation, Technische Universität Bergakademie Freiberg, (2012).

Google Scholar

[9] N. Travitzky, H. Windsheimer, T. Fey, P. Greil, Preceramic Paper-Derived Ceramics, J. Amer. Ceram. Soc., 91 (2008) 3477-3492.

DOI: 10.1111/j.1551-2916.2008.02752.x

Google Scholar

[10] T. Schlordt, B. Dermeik, V. Beil, M. Freihart, A. Hofenauer, N. Travitzky, P. Greil, Influence of calendering on the properties of paper-derived alumina ceramics, Ceram. Int., 40 (2013) 4917-4926.

DOI: 10.1016/j.ceramint.2013.10.080

Google Scholar

[11] C. Kluthe, B. Dermeik, W. Kollenberg, P. Greil, N. Travitzky, Processing, Microstructure and Properties of Paper-Derived Porous Al2O3-Substrates, J. Ceram. Sci. Tech., 03 (2012) 111-118.

Google Scholar

[12] H. Windsheimer, N. Travitzky, A. Hofenauer, P. Greil, Laminated Object manufacturing of Preceramic-paper-Derived Si-SiC Composites, Adv. Mat., 19 (2007) 4515-4519.

DOI: 10.1002/adma.200700789

Google Scholar

[13] S.L. Stares, M.C. Fredel, P. Greil, N. Travitzky, Paper-derived β-TCP, Mater. Lett., 98 (2013) 161-163.

DOI: 10.1016/j.matlet.2013.02.021

Google Scholar

[14] A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger, P. Scheller, Temperature Depending Influence of the Martensite Formation on the Mechanical Properties of High-Alloyed Cr-Mn-Ni As-Cast Steels, Steel Res. Int., 82 (2011) 6.

DOI: 10.1002/srin.201000228

Google Scholar

[15] C. Weigelt, Energy absorbing TRIP-steel/ zirconia composite structures based on ceramic extrusion, Faculty of Mechanical, Process and Energy Engineering, TU Bergakademie Freiberg, 2013, pp.1-195.

Google Scholar

[16] M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar, A. Saatchi, Effect of TIG welding on corrosion behavior of 316L stainless steel, Mater. Lett., 61 (2007) 2343-2346.

DOI: 10.1016/j.matlet.2006.09.008

Google Scholar

[17] B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, Z.H. Xu, Pitting and stress corrosion cracking behavior in welded austenitic stainless steel, Electrochim. Acta, 50 (2005) 1391-1403.

DOI: 10.1016/j.electacta.2004.08.036

Google Scholar