[1]
C. Zweben, Thermal materials solve power electronics challenges, Power Electr. Technol. (2006) 40-47.
Google Scholar
[2]
M.Z. Bukhari, D. Brabazon, M.S.J. Hashmi, Assessment of Suitable Thermally Enhanced Materials for Electronics Packaging Application, in: The 1st International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS), 2011, At Athlone Institute of Technology, Athlone, Co. Westmeath, Republic of Ireland.
Google Scholar
[3]
M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, L. Rohr, Heat transport across the metal–diamond interface, Diam. Relat. Mater. 17 (2008) 1438-1442.
DOI: 10.1016/j.diamond.2008.01.023
Google Scholar
[4]
A. Majumdar, P. Reddy, Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces, Appl. Phys. Lett. 84 (2004) 4768-4770.
DOI: 10.1063/1.1758301
Google Scholar
[5]
C. Monachon, L. Weber, Thermal boundary conductance of transition metals on diamond, Emerg. Mater. Res. 1 (2012) 89-98.
DOI: 10.1680/emr.11.00011
Google Scholar
[6]
C. Monachon, L. Weber, Thermal boundary conductance between refractory metal carbides and diamond, Acta Mater. 73 (2014) 337-346.
DOI: 10.1016/j.actamat.2014.04.024
Google Scholar
[7]
C. Monachon, L. Weber, Influence of a Nanometric Al2O3 Interlayer on the Thermal Conductance of an Al/(Si, Diamond) Interface, Adv. Eng. Mater. 17 (2015) 68-75.
DOI: 10.1002/adem.201400060
Google Scholar
[8]
C. Monachon et al., Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys. 115 (2014) 123509.
DOI: 10.1063/1.4869668
Google Scholar
[9]
K.C. Collins, S. Chen, G. Chen, Effects of surface chemistry on thermal conductance at aluminum–diamond interfaces, Appl. Phys. Lett. 97 (2010) 083102.
Google Scholar
[10]
H.J. Böhm, S. Nogales, Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions, Compos. Sci. Techn. 68 (2008) 1181-1187.
DOI: 10.1016/j.compscitech.2007.06.009
Google Scholar
[11]
J.M. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis, Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution, Mater. Sci. Eng. A 480 (2008) 483-488.
DOI: 10.1016/j.msea.2007.07.026
Google Scholar
[12]
L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films, Diam. Relat. Mater. 11 (2002) 845-850.
DOI: 10.1016/s0925-9635(01)00636-7
Google Scholar
[13]
Y. Kaibara, K. Sugata, M. Tachiki, H. Umezawa, H. Kawarada, Control wettability of the hydrogen-terminated diamond surface and the oxidized diamond surface using an atomic force microscope, Diam. Relat. Mater. 12 (2003) 560-564.
DOI: 10.1016/s0925-9635(02)00373-4
Google Scholar
[14]
M. Wang, N. Simon, C. Decorse-Pascanut, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Comparison of the chemical composition of boron-doped diamond surfaces upon different oxidation processes, Electrochim. Acta 54 (2009).
DOI: 10.1016/j.electacta.2009.05.037
Google Scholar
[15]
Z. Tan, Z. Li, G. Fan, X. Kai, G. Ji, L. Zhang, D. Zhang, Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties, Diam. Relat. Mater. 31 (2013) 1-5.
DOI: 10.1016/j.diamond.2012.10.008
Google Scholar
[16]
P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity, Compos. Sci. Technol. 66 (2006) 2677-2685.
DOI: 10.1016/j.compscitech.2006.03.016
Google Scholar
[17]
A. Abyzov, S. Kidalov, F. Shakhov, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix, J. Mater. Sci. 46 (2011) 1424-1438.
DOI: 10.1007/s10853-010-4938-x
Google Scholar
[18]
S. Kumaragurubaran, T. Yamada, S. Shikata, Annealing effects in H- and O-terminated P-doped diamond (111) surfaces, Diam. Relat. Mater. 17 (2008) 472-475.
DOI: 10.1016/j.diamond.2007.12.068
Google Scholar
[19]
G. Speranza, S. Torrengo, A. Miotello, L. Minati, I. Bernagozzi, M. Ferrari, M. Dipalo, E. Kohn, XPS and UPS in situ study of oxygen thermal desorption from nanocrystalline diamond surface oxidized by different process, Diam. Relat. Mater. 20 (2011).
DOI: 10.1016/j.diamond.2011.03.001
Google Scholar
[20]
R.E. Thomas, R.A. Rudder, R.J. Markunas, Thermal desorption from hydrogenated and oxygenated diamond (100) surfaces, J. Vac. Sci. Technol. A 10 (1992) 2451-2457.
DOI: 10.1116/1.577983
Google Scholar