Influence of the Diamond Surface Termination on the Thermal Conductivity of Al/Diamond- and Ag/Diamond MMCs

Article Preview

Abstract:

MMCs consisting of diamonds and highly conductive metal matrices have been produced via gas pressure assisted liquid metal infiltration and their thermal properties have been investigated. Special attention was paid towards the diamond surface termination and its influence on the diamond-metal-interface and the resulting heat transport across this interface. Altering the diamond terminating surface layer can lead to a rather drastic increase in the thermal conductivity, rendering MMCs with pretreated diamonds double the thermal conductivity of the ones with as-received diamonds. The evolution of those terminating layers with different pretreatment conditions and their influence on the thermal conductivity of the resulting MMCs is rather complex and an ever-growing field of interest for diamond heat sink materials.The observed thermal properties of the MMCs produced in this study will be linked with the established diamond surface termination and will demonstrate the potential that lies within the method of diamond surface modification.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

142-149

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Zweben, Thermal materials solve power electronics challenges, Power Electr. Technol. (2006) 40-47.

Google Scholar

[2] M.Z. Bukhari, D. Brabazon, M.S.J. Hashmi, Assessment of Suitable Thermally Enhanced Materials for Electronics Packaging Application, in: The 1st International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS), 2011, At Athlone Institute of Technology, Athlone, Co. Westmeath, Republic of Ireland.

Google Scholar

[3] M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, L. Rohr, Heat transport across the metal–diamond interface, Diam. Relat. Mater. 17 (2008) 1438-1442.

DOI: 10.1016/j.diamond.2008.01.023

Google Scholar

[4] A. Majumdar, P. Reddy, Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces, Appl. Phys. Lett. 84 (2004) 4768-4770.

DOI: 10.1063/1.1758301

Google Scholar

[5] C. Monachon, L. Weber, Thermal boundary conductance of transition metals on diamond, Emerg. Mater. Res. 1 (2012) 89-98.

DOI: 10.1680/emr.11.00011

Google Scholar

[6] C. Monachon, L. Weber, Thermal boundary conductance between refractory metal carbides and diamond, Acta Mater. 73 (2014) 337-346.

DOI: 10.1016/j.actamat.2014.04.024

Google Scholar

[7] C. Monachon, L. Weber, Influence of a Nanometric Al2O3 Interlayer on the Thermal Conductance of an Al/(Si, Diamond) Interface, Adv. Eng. Mater. 17 (2015) 68-75.

DOI: 10.1002/adem.201400060

Google Scholar

[8] C. Monachon et al., Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys. 115 (2014) 123509.

DOI: 10.1063/1.4869668

Google Scholar

[9] K.C. Collins, S. Chen, G. Chen, Effects of surface chemistry on thermal conductance at aluminum–diamond interfaces, Appl. Phys. Lett. 97 (2010) 083102.

Google Scholar

[10] H.J. Böhm, S. Nogales, Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions, Compos. Sci. Techn. 68 (2008) 1181-1187.

DOI: 10.1016/j.compscitech.2007.06.009

Google Scholar

[11] J.M. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis, Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution, Mater. Sci. Eng. A 480 (2008) 483-488.

DOI: 10.1016/j.msea.2007.07.026

Google Scholar

[12] L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films, Diam. Relat. Mater. 11 (2002) 845-850.

DOI: 10.1016/s0925-9635(01)00636-7

Google Scholar

[13] Y. Kaibara, K. Sugata, M. Tachiki, H. Umezawa, H. Kawarada, Control wettability of the hydrogen-terminated diamond surface and the oxidized diamond surface using an atomic force microscope, Diam. Relat. Mater. 12 (2003) 560-564.

DOI: 10.1016/s0925-9635(02)00373-4

Google Scholar

[14] M. Wang, N. Simon, C. Decorse-Pascanut, M. Bouttemy, A. Etcheberry, M. Li, R. Boukherroub, S. Szunerits, Comparison of the chemical composition of boron-doped diamond surfaces upon different oxidation processes, Electrochim. Acta 54 (2009).

DOI: 10.1016/j.electacta.2009.05.037

Google Scholar

[15] Z. Tan, Z. Li, G. Fan, X. Kai, G. Ji, L. Zhang, D. Zhang, Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties, Diam. Relat. Mater. 31 (2013) 1-5.

DOI: 10.1016/j.diamond.2012.10.008

Google Scholar

[16] P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity, Compos. Sci. Technol. 66 (2006) 2677-2685.

DOI: 10.1016/j.compscitech.2006.03.016

Google Scholar

[17] A. Abyzov, S. Kidalov, F. Shakhov, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix, J. Mater. Sci. 46 (2011) 1424-1438.

DOI: 10.1007/s10853-010-4938-x

Google Scholar

[18] S. Kumaragurubaran, T. Yamada, S. Shikata, Annealing effects in H- and O-terminated P-doped diamond (111) surfaces, Diam. Relat. Mater. 17 (2008) 472-475.

DOI: 10.1016/j.diamond.2007.12.068

Google Scholar

[19] G. Speranza, S. Torrengo, A. Miotello, L. Minati, I. Bernagozzi, M. Ferrari, M. Dipalo, E. Kohn, XPS and UPS in situ study of oxygen thermal desorption from nanocrystalline diamond surface oxidized by different process, Diam. Relat. Mater. 20 (2011).

DOI: 10.1016/j.diamond.2011.03.001

Google Scholar

[20] R.E. Thomas, R.A. Rudder, R.J. Markunas, Thermal desorption from hydrogenated and oxygenated diamond (100) surfaces, J. Vac. Sci. Technol. A 10 (1992) 2451-2457.

DOI: 10.1116/1.577983

Google Scholar