Influence of Mg-PSZ Particle Size on the Fatigue Behaviour of a High Alloy Steel Matrix Composite

Article Preview

Abstract:

Metal Matrix Composites (MMC) based on a TRIP (TRansformation Induced Plasticity)- or TWIP (TWinning Induced Plasticity)-steel matrix reinforced with MgO-partially stabilized zirconia (Mg-PSZ) are an interesting research field as both components exhibit a deformation-induced or stress-assisted martensitic phase transformation and twinning, respectively. The present work deals with the fatigue characteristics of a reinforced CrMnNi-steel as a function of the ceramic particle size. Therefore, the particles were classified into three grades (grade 1: <10 μm; grade 2: 10-30 μm; grade 3: 30-50 μm) whereas the volume fraction concerning the composite material was kept constant at 10 vol.%. The composites were produced using the hot pressing technique. The tests were performed under total strain control in a range of 0.2% ≤ Δεt ≤ 1.2%. The microstructure of fatigued specimens was examined using scanning electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

176-181

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chawla, Y. -L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Advanced Engineering Materials 3 (2001) 357-371.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[2] J.N. Hall, J.W. Jones, A.K. Sachdev, Particle size, volume fraction and matrix strength effects on fatigue behaviour and particle fracture in 2124 aluminum-SiCp composites, Materials Science and Engineering A183 (1994) 69-80.

DOI: 10.1016/0921-5093(94)90891-5

Google Scholar

[3] N. Chawla, C. Andres, J.W. Jones, J.E. Allison, Cyclic stress-strain behaviour of particle reinforced metal matrix composites, Scripta Materialia 38 (1998) 1595-1600.

DOI: 10.1016/s1359-6462(98)00067-0

Google Scholar

[4] O. Hartmann, K. Herrmann, H. Biermann, Fatigue Behaviour of Al-Matrix Composites, Advanced Engineering Materials 6 (2004) 477-485.

DOI: 10.1002/adem.200400580

Google Scholar

[5] A. Glage, C. Weigelt, J. Räthel, H. Biermann, Influence of Matrix Strength and Volume Fraction of Mg-PSZ on the Cyclic Deformation Behavior of Hot Pressed TRIP/TWIP-Matrix Composite Materials, Advanced Engineering Materials 15 (2013) 550-557.

DOI: 10.1002/adem.201200334

Google Scholar

[6] A. Glage, C. Weigelt, J. Räthel, H. Biermann, Fatigue behaviour of hot pressed austenitic TWIP steel and TWIP steel/Mg-PSZ composite materials, International Journal of Fatigue 65 (2014) 9-17.

DOI: 10.1016/j.ijfatigue.2013.11.025

Google Scholar

[7] N.L. Han, Z.G. Wang, L. Sun, Effect of Reinforcement Size on Low Cylcle Fatigue Behavior of SiC Particle Reinforced Aluminum Matrix Composites, Scripta Metallurgica et Materialia 33 (1995) 781-787.

DOI: 10.1016/0956-716x(95)00281-y

Google Scholar

[8] W. Li, Z.H. Chen, D. Chen, J. Teng, L. Changhao, Understanding the influence of particle size on strain versus fatigue life, and fracture behavior of aluminum alloy composites produced by spray deposition, Journal of Materials Science 46 (2011).

DOI: 10.1007/s10853-010-4885-6

Google Scholar

[9] P. Poza, J. Llorca, Mechanical Behavior of Failure Micromechanisms of Al/Al2O3 Composites under Cyclic Deformation, Metallurgical and Materials Transactions A 26 (1995) 3131-3141.

DOI: 10.1007/bf02669442

Google Scholar

[10] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing Mechanism of Mg-PSZ Particles in Highly-Alloyed TRIP Steel, steel research international 82 (2011) 1133-1140.

DOI: 10.1002/srin.201100099

Google Scholar

[11] R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics, Journal of the American Ceramic Society 83 (2000) 461-487.

DOI: 10.1111/j.1151-2916.2000.tb01221.x

Google Scholar

[12] A. Glage, S. Martin, S. Decker, C. Weigelt, M. Junghanns, C.G. Aneziris, U. Martin, L. Krüger, H. Biermann, Cyclic Deformation of Powder Metallurgy Stainless Steel/Mg-PSZ Composite Materials, steel research international 83 (2012) 554-564.

DOI: 10.1002/srin.201100288

Google Scholar

[13] N. Chawla, K.K. Chawla, Metal Matrix Composites, first ed., Springer, New York, (2006).

Google Scholar

[14] S. Kumai, J.E. King, J.F. Knott, Fatigue crack growth behaviour in molten-metal processed SiC particle-reinforced aluminium alloys, Fatigue and Fracture of Engineering Materials and Structures 15 (1992) 1-11.

DOI: 10.1111/j.1460-2695.1992.tb00011.x

Google Scholar

[15] Z.M. Sun, J.B. Li, Z.G. Wang, W.J. Li, Residual stresses in silicon carbide particulate reinforced aluminum composites, Acta Metallurgica et Materialia 40 (1992) 2961-2966.

DOI: 10.1016/0956-7151(92)90460-v

Google Scholar