[1]
N. Chawla, Y. -L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Advanced Engineering Materials 3 (2001) 357-371.
DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i
Google Scholar
[2]
J.N. Hall, J.W. Jones, A.K. Sachdev, Particle size, volume fraction and matrix strength effects on fatigue behaviour and particle fracture in 2124 aluminum-SiCp composites, Materials Science and Engineering A183 (1994) 69-80.
DOI: 10.1016/0921-5093(94)90891-5
Google Scholar
[3]
N. Chawla, C. Andres, J.W. Jones, J.E. Allison, Cyclic stress-strain behaviour of particle reinforced metal matrix composites, Scripta Materialia 38 (1998) 1595-1600.
DOI: 10.1016/s1359-6462(98)00067-0
Google Scholar
[4]
O. Hartmann, K. Herrmann, H. Biermann, Fatigue Behaviour of Al-Matrix Composites, Advanced Engineering Materials 6 (2004) 477-485.
DOI: 10.1002/adem.200400580
Google Scholar
[5]
A. Glage, C. Weigelt, J. Räthel, H. Biermann, Influence of Matrix Strength and Volume Fraction of Mg-PSZ on the Cyclic Deformation Behavior of Hot Pressed TRIP/TWIP-Matrix Composite Materials, Advanced Engineering Materials 15 (2013) 550-557.
DOI: 10.1002/adem.201200334
Google Scholar
[6]
A. Glage, C. Weigelt, J. Räthel, H. Biermann, Fatigue behaviour of hot pressed austenitic TWIP steel and TWIP steel/Mg-PSZ composite materials, International Journal of Fatigue 65 (2014) 9-17.
DOI: 10.1016/j.ijfatigue.2013.11.025
Google Scholar
[7]
N.L. Han, Z.G. Wang, L. Sun, Effect of Reinforcement Size on Low Cylcle Fatigue Behavior of SiC Particle Reinforced Aluminum Matrix Composites, Scripta Metallurgica et Materialia 33 (1995) 781-787.
DOI: 10.1016/0956-716x(95)00281-y
Google Scholar
[8]
W. Li, Z.H. Chen, D. Chen, J. Teng, L. Changhao, Understanding the influence of particle size on strain versus fatigue life, and fracture behavior of aluminum alloy composites produced by spray deposition, Journal of Materials Science 46 (2011).
DOI: 10.1007/s10853-010-4885-6
Google Scholar
[9]
P. Poza, J. Llorca, Mechanical Behavior of Failure Micromechanisms of Al/Al2O3 Composites under Cyclic Deformation, Metallurgical and Materials Transactions A 26 (1995) 3131-3141.
DOI: 10.1007/bf02669442
Google Scholar
[10]
S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing Mechanism of Mg-PSZ Particles in Highly-Alloyed TRIP Steel, steel research international 82 (2011) 1133-1140.
DOI: 10.1002/srin.201100099
Google Scholar
[11]
R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics, Journal of the American Ceramic Society 83 (2000) 461-487.
DOI: 10.1111/j.1151-2916.2000.tb01221.x
Google Scholar
[12]
A. Glage, S. Martin, S. Decker, C. Weigelt, M. Junghanns, C.G. Aneziris, U. Martin, L. Krüger, H. Biermann, Cyclic Deformation of Powder Metallurgy Stainless Steel/Mg-PSZ Composite Materials, steel research international 83 (2012) 554-564.
DOI: 10.1002/srin.201100288
Google Scholar
[13]
N. Chawla, K.K. Chawla, Metal Matrix Composites, first ed., Springer, New York, (2006).
Google Scholar
[14]
S. Kumai, J.E. King, J.F. Knott, Fatigue crack growth behaviour in molten-metal processed SiC particle-reinforced aluminium alloys, Fatigue and Fracture of Engineering Materials and Structures 15 (1992) 1-11.
DOI: 10.1111/j.1460-2695.1992.tb00011.x
Google Scholar
[15]
Z.M. Sun, J.B. Li, Z.G. Wang, W.J. Li, Residual stresses in silicon carbide particulate reinforced aluminum composites, Acta Metallurgica et Materialia 40 (1992) 2961-2966.
DOI: 10.1016/0956-7151(92)90460-v
Google Scholar