[1]
R.D. Joseph, Copper and copper alloys, ASM international handbook, ASM, (2001).
Google Scholar
[2]
A. Luedtke, Thermal management materials for high-performance applications, Advanced Engineering Materials 6/3 (2004) 132-144.
Google Scholar
[3]
G. Celebi Efe, M. Ipek, S. Zeytin and C. Bindal, An investigation of the effect of SiC particles on Cu-SiC composites, Composites: Part B 43 (2012) 1813-1822.
DOI: 10.1016/j.compositesb.2012.01.006
Google Scholar
[4]
G.Q. Chen, Z.Y. Xiu, S.H. Meng, G.H. Wu and D.Z. Zhu, Thermal expansion and mechanical properties of high reinforcement content SiCp/Cu composites fabricated by squeeze casting technology, Trans. Nonferrous Metals Society China 19 (2009) 600-604.
DOI: 10.1016/s1003-6326(10)60116-1
Google Scholar
[5]
X.L. Shi, M. Wang, S. Zhang and Q. Zhang, Fabrication and properties of W-20Cu alloy reinforced by titanium nitride coated SiC fibers, Int. Journal of Refractory Metals and Hard Materials 41 (2013) 60-65.
DOI: 10.1016/j.ijrmhm.2013.02.002
Google Scholar
[6]
X.N. Zhang, I. Geng and B. Xu, Compressive behaviour of Al-based hybrid composites reinforced with SiC whisker and SiC nanoparticles, Materials Chemistry and Physics 101 (2007) 242-246.
DOI: 10.1016/j.matchemphys.2006.04.004
Google Scholar
[7]
T. Schubert, B. Trindade, T. Weißgärber and B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Materials Science and Engineering A 475 (2008) 39-44.
DOI: 10.1016/j.msea.2006.12.146
Google Scholar
[8]
V. Pfaffenholz, S. Lindig, A. Brendel and H. Bolt, Synthesis and analysis of the thermal behavior of SiC-fibre reinforced copper matrix composites as heat sink material, Advanced Materials Research 59 (2009) 153-157.
DOI: 10.4028/www.scientific.net/amr.59.153
Google Scholar
[9]
P. Pertes, J. Hemptenmacher and H. Schurmann, Production of MMCs on the basis of fibres coated with the metal alloy by magnetron sputtering, Materials Science Forum (2007) 539-543.
DOI: 10.4028/www.scientific.net/msf.539-543.931
Google Scholar
[10]
C. Rado, B. Drevent and N. Eustathopoulos, The role of compound formation in reactive wetting: the Cu/SiC system, Acta Materialia 48 (2000) 4483-4491.
DOI: 10.1016/s1359-6454(00)00235-4
Google Scholar
[11]
X.H. Qu, L. Zhang, M. Wu and S. Ren, Review of metal composites with high thermal conductivity for thermal management applications, Progress in Natural Science: Materials International 21 (2011) 189-197.
DOI: 10.1016/s1002-0071(12)60029-x
Google Scholar
[12]
T. Köck, A. Brendel and H. Bolt, Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites, Journal of Nuclear Materials 363 (2007) 197-201.
DOI: 10.1016/j.jnucmat.2007.01.022
Google Scholar
[13]
V. Martínez, S. Ordoñez, F. Castro, L. Olivares and J. Marín, Wettting of silicon carbide by copper alloys, Journal of Materials Science 38 (2003) 4047-4054.
DOI: 10.1023/a:1026270819828
Google Scholar
[14]
L. Zhang, X. Qu, B. Duan, X. He, M. Qin and X. Lu, Preparation of SiCp/Cu composite by Ti-activated pressureless infiltration, Trans. Nonferrous Metals Society China 18 (2008) 872-878.
DOI: 10.1016/s1003-6326(08)60151-x
Google Scholar
[15]
L. Zhang, X. Qu, B. Duan, X. He, S. Ren and M. Qin, Microstructure and thermos-mechanical properties of pressureless infiltrated SiCp/Cu composites, Composites Science and Technology 68 (2008) 2731-2738.
DOI: 10.1016/j.compscitech.2008.05.018
Google Scholar
[16]
J. Narciso, L. Weber, J.M. Molina, A. Mortensen and E. Louis, Reactivity and thermal behaviour of Cu-Si/SiC composites: effects of SiC oxidation, Materials Science and Technology 68 (2006) 1464-1468.
DOI: 10.1179/174328406x131000
Google Scholar
[17]
G.W. Liu, M.L. Muolo, F. Valenza and a. Passerone, Survey on wetting of SiC by molten metals, Ceramics International 36 (2010) 1177-1188.
DOI: 10.1016/j.ceramint.2010.01.001
Google Scholar
[18]
G. Sundberg, P. Paul, C. Sung and T. Vasilos, Fabrication of CuSiC metal matrix composites, Journal of Material Science 41 (2006) 485-504.
DOI: 10.1007/s10853-005-2622-3
Google Scholar
[19]
H. Xing, X. Cao, W. Hu, L. Zhao and J. Zhang, Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting, Materials Letters 59 (2005) 1563-1566.
DOI: 10.1016/j.matlet.2005.01.023
Google Scholar
[20]
A. Ureña, E.E. Martı́nez, P. Rodrigo and L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Composites Science and Technology 64 (2004) 1843-1853.
DOI: 10.1016/j.compscitech.2004.01.010
Google Scholar
[21]
O. Lott, Interface Design of Copper/Alumina Composites with Interpenetrating Phase Structure, PhD thesis, School of Materials Science and Engineering University of New South Wales, Sydney, Australia, (2012).
Google Scholar
[22]
E.L. Garcia-Cordovilla, and J. Narciso, Pressure infiltration of packed ceramic particulates by liquid metals, Acta Materialia 47 (1999) 4461-79.
DOI: 10.1016/s1359-6454(99)00318-3
Google Scholar