Synthesis of Copper/Silicon-Carbide Composites in a Thermodynamic Disequilibrium

Article Preview

Abstract:

Composites with interpenetrating metal-ceramic microstructures (IPC, interpenetrating composites) can be tailored for specific applications, such as high thermal conductivity combined with low thermal expansion, e.g. for heat sinks. Heat sinks are required in power electronic devices or in future fusion reactor technology where extreme conditions and high cyclic thermo-mechanical loads appear. Due to its rigid ceramic backbone IPCs are expected to reveal high thermal stability. Pure silicon carbide exhibits high thermal conductivity, low coefficient of thermal expansion, high corrosion and wear resistance. But it is also known as a very brittle material when mechanical loads are applied. Thus a composite of silicon carbide with ductile and highly conductive copper seems to be a promising new material for a number of applications.This paper reports the synthesis of Cu-SiC composites using a unique high temperature squeeze casting process (HTSC). Microstructural design of SiC-preforms with open porosity and its synthesis progress is reported. Influence of preform properties, temperature, pressure and atmosphere during HTSC were investigated. A qualitative and quantitative description of the microstructure of the composites and their composition allows the creation of structure-property correlations that take effect retroactively to the casting process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 825-826)

Pages:

189-196

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.D. Joseph, Copper and copper alloys, ASM international handbook, ASM, (2001).

Google Scholar

[2] A. Luedtke, Thermal management materials for high-performance applications, Advanced Engineering Materials 6/3 (2004) 132-144.

Google Scholar

[3] G. Celebi Efe, M. Ipek, S. Zeytin and C. Bindal, An investigation of the effect of SiC particles on Cu-SiC composites, Composites: Part B 43 (2012) 1813-1822.

DOI: 10.1016/j.compositesb.2012.01.006

Google Scholar

[4] G.Q. Chen, Z.Y. Xiu, S.H. Meng, G.H. Wu and D.Z. Zhu, Thermal expansion and mechanical properties of high reinforcement content SiCp/Cu composites fabricated by squeeze casting technology, Trans. Nonferrous Metals Society China 19 (2009) 600-604.

DOI: 10.1016/s1003-6326(10)60116-1

Google Scholar

[5] X.L. Shi, M. Wang, S. Zhang and Q. Zhang, Fabrication and properties of W-20Cu alloy reinforced by titanium nitride coated SiC fibers, Int. Journal of Refractory Metals and Hard Materials 41 (2013) 60-65.

DOI: 10.1016/j.ijrmhm.2013.02.002

Google Scholar

[6] X.N. Zhang, I. Geng and B. Xu, Compressive behaviour of Al-based hybrid composites reinforced with SiC whisker and SiC nanoparticles, Materials Chemistry and Physics 101 (2007) 242-246.

DOI: 10.1016/j.matchemphys.2006.04.004

Google Scholar

[7] T. Schubert, B. Trindade, T. Weißgärber and B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Materials Science and Engineering A 475 (2008) 39-44.

DOI: 10.1016/j.msea.2006.12.146

Google Scholar

[8] V. Pfaffenholz, S. Lindig, A. Brendel and H. Bolt, Synthesis and analysis of the thermal behavior of SiC-fibre reinforced copper matrix composites as heat sink material, Advanced Materials Research 59 (2009) 153-157.

DOI: 10.4028/www.scientific.net/amr.59.153

Google Scholar

[9] P. Pertes, J. Hemptenmacher and H. Schurmann, Production of MMCs on the basis of fibres coated with the metal alloy by magnetron sputtering, Materials Science Forum (2007) 539-543.

DOI: 10.4028/www.scientific.net/msf.539-543.931

Google Scholar

[10] C. Rado, B. Drevent and N. Eustathopoulos, The role of compound formation in reactive wetting: the Cu/SiC system, Acta Materialia 48 (2000) 4483-4491.

DOI: 10.1016/s1359-6454(00)00235-4

Google Scholar

[11] X.H. Qu, L. Zhang, M. Wu and S. Ren, Review of metal composites with high thermal conductivity for thermal management applications, Progress in Natural Science: Materials International 21 (2011) 189-197.

DOI: 10.1016/s1002-0071(12)60029-x

Google Scholar

[12] T. Köck, A. Brendel and H. Bolt, Interface reactions between silicon carbide and interlayers in silicon carbide-copper metal-matrix composites, Journal of Nuclear Materials 363 (2007) 197-201.

DOI: 10.1016/j.jnucmat.2007.01.022

Google Scholar

[13] V. Martínez, S. Ordoñez, F. Castro, L. Olivares and J. Marín, Wettting of silicon carbide by copper alloys, Journal of Materials Science 38 (2003) 4047-4054.

DOI: 10.1023/a:1026270819828

Google Scholar

[14] L. Zhang, X. Qu, B. Duan, X. He, M. Qin and X. Lu, Preparation of SiCp/Cu composite by Ti-activated pressureless infiltration, Trans. Nonferrous Metals Society China 18 (2008) 872-878.

DOI: 10.1016/s1003-6326(08)60151-x

Google Scholar

[15] L. Zhang, X. Qu, B. Duan, X. He, S. Ren and M. Qin, Microstructure and thermos-mechanical properties of pressureless infiltrated SiCp/Cu composites, Composites Science and Technology 68 (2008) 2731-2738.

DOI: 10.1016/j.compscitech.2008.05.018

Google Scholar

[16] J. Narciso, L. Weber, J.M. Molina, A. Mortensen and E. Louis, Reactivity and thermal behaviour of Cu-Si/SiC composites: effects of SiC oxidation, Materials Science and Technology 68 (2006) 1464-1468.

DOI: 10.1179/174328406x131000

Google Scholar

[17] G.W. Liu, M.L. Muolo, F. Valenza and a. Passerone, Survey on wetting of SiC by molten metals, Ceramics International 36 (2010) 1177-1188.

DOI: 10.1016/j.ceramint.2010.01.001

Google Scholar

[18] G. Sundberg, P. Paul, C. Sung and T. Vasilos, Fabrication of CuSiC metal matrix composites, Journal of Material Science 41 (2006) 485-504.

DOI: 10.1007/s10853-005-2622-3

Google Scholar

[19] H. Xing, X. Cao, W. Hu, L. Zhao and J. Zhang, Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting, Materials Letters 59 (2005) 1563-1566.

DOI: 10.1016/j.matlet.2005.01.023

Google Scholar

[20] A. Ureña, E.E. Martı́nez, P. Rodrigo and L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Composites Science and Technology 64 (2004) 1843-1853.

DOI: 10.1016/j.compscitech.2004.01.010

Google Scholar

[21] O. Lott, Interface Design of Copper/Alumina Composites with Interpenetrating Phase Structure, PhD thesis, School of Materials Science and Engineering University of New South Wales, Sydney, Australia, (2012).

Google Scholar

[22] E.L. Garcia-Cordovilla, and J. Narciso, Pressure infiltration of packed ceramic particulates by liquid metals, Acta Materialia 47 (1999) 4461-79.

DOI: 10.1016/s1359-6454(99)00318-3

Google Scholar