[1]
B. O'Regan, M. A Grätzel, low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740.
DOI: 10.1038/353737a0
Google Scholar
[2]
T. P. Chou, Q. Zhang, B. Russo, and G. Cao, Enhanced light-conversion efficiency of titanium-dioxide dye-sensitized solar cell with addition of indium-tin-oxide and flourine-tin-oxide nanoparticles in electrode films, J. Nanophoton. 2 (2008).
DOI: 10.1117/1.3053995
Google Scholar
[3]
K. L. Jin, H. W. Bo, I. L. Sung, G. K. Young, W. J. Yong, B. L. Su, and R. K. Mi, Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells, J Ind. Eng. Chem. 15 (2009) 724-729.
DOI: 10.1016/j.jiec.2009.09.053
Google Scholar
[4]
L.U. Okoli, J. O. Ozuomba, A. J. Ekpunobi, P. I. Ekwo, Anthocyanin-dyed TiO2 Electrode and its Performance on Dye-Sensitized Solar Cell, Res. J. Recent Sci. 1 (5) (2012) 22-27.
Google Scholar
[5]
M. Kaur, N. K. Verma, Study on CaCO3-coated ZnO Nanoparticles Based dye sensitized solar cell, J Mater Sci: Mater Electron. 24 (2013) 4980-4986.
DOI: 10.1007/s10854-013-1512-8
Google Scholar
[6]
A.Y. El-Etre, S.M. Reda, Characterization nanocrystalline SnO2 thin film fabricated by electrodeposition method for dye-sensitized solar cell application, Appl. Surf. Sci. 256 (2010) 6601-6606.
DOI: 10.1016/j.apsusc.2010.04.055
Google Scholar
[7]
C. Prasittichai, J. T. Hupp, Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition, J. Phys. Chem. Lett. 1 (2010) 1611-1615.
DOI: 10.1021/jz100361f
Google Scholar
[8]
K. Kohjiro Hara, T. Horiguchi, K. Sayama, H. Sugihara, and H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energ. Mat. Sol. C 64 (2000) 115-134.
DOI: 10.1016/s0927-0248(00)00065-9
Google Scholar
[9]
M. Nazeeruddin, P. Pechy, T. Renouard, S. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. Deacon, Bignozzi and M. Gratzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc. 123 (2001).
DOI: 10.1021/ja003299u
Google Scholar
[10]
Cahyorini K. and I. K. Narsito., Chemically Synthesized Mesoporous Nitrogen-Doped TiO2 and its Application to High Efficiency Dye-Sensitized Solar Cells, Thammasat Int. J. Sc. Tech. 15 (2010) 1-10.
Google Scholar
[11]
C. H. Yoon, R. Vittal, J. Lee, W. Chae, and K. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochim. Acta. 53 (2008) 2890-2896.
DOI: 10.1016/j.electacta.2007.10.074
Google Scholar
[12]
I. Jang, K. Song, J. H. Park, and S. G. Oh., Enhancement of Dye Adsorption on TiO2 Surface through Hydroxylation Process for Dye-sensitized Solar Cells, Bull. Korean Chem. Soc. 34 (2013) 2883-2888.
DOI: 10.5012/bkcs.2013.34.10.2883
Google Scholar
[13]
S. Saehana, R. Prasetyowati, M. I. Hidayat, P. Arifin, Khairurrijal, and M. Abdullah, Efficiency Improvement in TiO2-Particle Based Solar Cells After Deposition of Metal in Spaces Between Particles, IJBAS-IJENS. 11 (2011) 15-26.
Google Scholar
[14]
W. D. Jehng, Y. M. Huang, and C. C. Chen, The effect of thermo-vaccum systems in the dye sensitized solar cell, ECS Trans. 33 (2011) 61-64.
DOI: 10.1149/1.3565501
Google Scholar