[1]
C.H. Chen, Fabrication of LiCoO2, Thin Film Cathodes for Rechargeable Lithium. Solid State Ionics, 80 (1995) 1-4.
DOI: 10.1016/0167-2738(95)00140-2
Google Scholar
[2]
M. Yoshio, Synthesis of LiCoO2, from cobalt-organic acid complexes and its electrode behaviour in a lithium secondary battery. Journal of Power Sources, 40 (1992) 347-353.
DOI: 10.1016/0378-7753(92)80023-5
Google Scholar
[3]
R. Ruffo, C. Wessells, R.A. Huggins, Y. Cui, Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochemistry Communications, 11 (2009) 247–249.
DOI: 10.1016/j.elecom.2008.11.015
Google Scholar
[4]
M.S. Zhao, X.P. Song, Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. Journal of Power Sources, 164 (2007) 822-828.
DOI: 10.1016/j.jpowsour.2006.11.001
Google Scholar
[5]
N. Kitamura, H. Iwatsuki, Y. Idemoto, Improvement of cathode performance of LiMn2O4 as a cathode active material for Li ion battery by step-by-step supersonic-wave treatments. Journal of Power Sources, 189 (2009) 114–120.
DOI: 10.1016/j.jpowsour.2008.10.046
Google Scholar
[6]
H.W. Chan, J.G. Duh, J.F. Lee, Valence change by in situ XAS in surface modified LiMn2O4 for Li-ion battery, Electrochemistry Communications, 8 (2006) 1731–1736.
DOI: 10.1016/j.elecom.2006.07.038
Google Scholar
[7]
L. Zhang, G. Peng, X. Yang, P. Zhang, High performance LiFePO4/C cathode for lithium ion battery prepared under vacuum conditions, Vacuum 84 (2010) 1319-1322.
DOI: 10.1016/j.vacuum.2010.02.011
Google Scholar
[8]
J. Liua, J. Wanga, X. Yana, X. Zhanga, G. Yanga, A.F. Jalbout, R. Wanga, Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications, Electrochimica Acta 54 (2009) 5656–5659.
DOI: 10.1016/j.electacta.2009.05.003
Google Scholar
[9]
A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for Lithium Battery Cathodes, J. Electrochem. Soc., 148 (2001) 224-229.
DOI: 10.1149/1.1348257
Google Scholar
[10]
A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. The Electrochemical Society, 144 (1997) 1188-1194.
DOI: 10.1149/1.1837571
Google Scholar
[11]
Y.D. Li, S.X. Zhao, C.W. Nan, B.H. Li, Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. J. Of Alloys and Compounds. 509 (2011) 957-960.
DOI: 10.1016/j.jallcom.2010.08.154
Google Scholar
[12]
J. Kim, H. Kim, I. Park, Y.U. Park, J.K. Yoo, K.Y. Park. LiFePO4 with an alluaudite crystal structure for lithium ion batteries. J. Energy and Environmental Sciences. 6 (2013) 830-834.
DOI: 10.1039/c3ee24393a
Google Scholar
[13]
V.H. Nguyen, W.L. Wang, E.M. Jin, H.B. Gu. Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Applied Surface Science. 282 (2013) 444-449.
DOI: 10.1016/j.apsusc.2013.05.149
Google Scholar
[14]
S.S. Zhang, K. Xu, T.R. Jow, Evaluation on a water-based binder for the graphite anode of Li-ion batteries. Journal of Power Sources 138 (2004) 226–231.
DOI: 10.1016/j.jpowsour.2004.05.056
Google Scholar
[15]
H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications 8 (2006) 1553–1557.
DOI: 10.1016/j.elecom.2006.07.014
Google Scholar
[16]
Y. Bai, P. Qiu, Z. Wen, S. Hans, Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. Journal of Alloys and Compounds 508 (2010) 1–4.
DOI: 10.1016/j.jallcom.2010.05.173
Google Scholar
[17]
B. Jin, E.M. Jin, K.H. Park, H.B. Gu, Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery, Electrochemistry Communications, 10 (2008) 1537-1540.
DOI: 10.1016/j.elecom.2008.08.001
Google Scholar
[18]
Z. Xiao, G. Hu, K. Du, Z. Peng, Improving electrochemical performances of LiFePO4/C cathode material via a novel three-layer electrode, Trans. Nonferrous Met. Soc. China 23(2013) 3324−3329.
DOI: 10.1016/s1003-6326(13)62871-x
Google Scholar
[19]
Y. Janssen, D. Santhanagopalan, D. Qian, M. Chi, X. Wang, C. Hoffmann, Y. S. Meng; P. G. Khalifah, Reciprocal Salt Flux Growth of LiFePO4 Single Crystals with Controlled Defect Concentrations. Chemistry of Materials 25 (2013) 4574–4584.
DOI: 10.1021/cm4027682
Google Scholar