Fabrication of Photonic Crystal Based on Polystyrene Particles

Article Preview

Abstract:

Photonic crystals are dielectric materials with different refractive index or permittivity periodically. Photonic crystals have widely application for future technology such as waveguide, optical transistor, cavity of laser and biosensor. Photonic crystals can be fabricated in three types i.e 1D, 2D and 3D structure. In this paper, we report the successful fabrication of 3D photonic crystal from polystyrene particles. The fabrication process began with the synthesis of polystyrene particles followed by deposition on glass and flexible substrate using self-assembly method. We obtained polystyrene monodispered particles which have a uniform shaped with diameter 320 nm. Self-assembly method resulted to the arrangement of polystyrene particles on glass and flexible substrate. Stop band which is related to its optical property are at wavelength of 721 nm and 631 nm for photonic crystal on glass and flexible substrate, respectively. We found that filling fraction of photonic crystal on flexible substrate is lower than that of glass substrate due to some defects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-275

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding The Flow of Light, second ed. , Princeton Univ. Press, New Jersey, (2008).

DOI: 10.2307/j.ctvcm4gz9

Google Scholar

[2] S. John, Absorption in a disordered medium near a photon mobility edge, Phys. Rev. Lett. 53 (1984) 2169-2172.

DOI: 10.1103/physrevlett.53.2169

Google Scholar

[3] S. F. Joannopoulos, J. D, Pierre, R. Villeneuve, Photonic crystals: putting a new twist on light, Nature 386 (1987) 143-149.

DOI: 10.1038/386143a0

Google Scholar

[4] E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronis, Phy. Rev. Lett. 48 (1982) 2059–(2062).

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[5] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987) 2486–248.

DOI: 10.1103/physrevlett.58.2486

Google Scholar

[6] S. Noda, Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths, Science 289 (2000) 604–606.

DOI: 10.1126/science.289.5479.604

Google Scholar

[7] D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, Opaline photonic crystals: How does self-assembly work?, Adv. Mater. 16 (2004) 1393–1399.

DOI: 10.1002/adma.200400455

Google Scholar

[8] J. Deng, X. Tao, P. Li, P. Xue, Y. Zhang, X. Sun, and C. K. Kai, A simple self-assembly method for colloidal photonic crystals with a large area, J. Colloid Interface Sci. 286 (2005) 573–578.

DOI: 10.1016/j.jcis.2005.01.025

Google Scholar

[9] M. N. Shkunov, M. C. DeLong, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, Photonic versus random lasing in opal single crystals, Synth. Met. 116 (2001) 485–491.

DOI: 10.1016/s0379-6779(00)00420-3

Google Scholar

[10] S. Fan, Z. Wang, D. A. B. Miller, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, Photonic crystal for communication applications, Proc. SPIE 4870 (2002) 339–347.

Google Scholar

[11] K. H. Baek and A. Gopinath, Self-assembled photonic crystal waveguides, IEEE Photonics Technol. Lett. 17 (2005) 351–353.

DOI: 10.1109/lpt.2004.839789

Google Scholar

[12] L. Li and G. Q. Liu, Photonic crystal ring resonator channel drop filter, Opt. - Int. J. Light Electron Opt. 124 (2013) 2966–2968.

DOI: 10.1016/j.ijleo.2012.09.012

Google Scholar

[13] J. H. Zhang, P. Zhan, Z. L. Wang, W. Y. Zhang, and N. B. Ming, Preparation of monodisperse silica particles with controllable size and shape, J. Mater. Res. 18 (2003) 649–653.

DOI: 10.1557/jmr.2003.0085

Google Scholar

[14] L. Safriani, B. Cai, K. Komatsu, O. Sugihara, and T. Kaino, Fabrication of Inverse Opal TiO2 Waveguide Structure, Jpn. J. Appl. Phys. 47 (2008) 1208-1210.

DOI: 10.1143/jjap.47.1208

Google Scholar

[15] R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, Optical properties of inverse opal photonic crystals, Chem. Mater. 14 (2002) 3305–3315.

DOI: 10.1021/cm020100z

Google Scholar