Synthesis of Styrofoam Fibers Using Rotary Forcespinning Technique

Article Preview

Abstract:

Development of rotary forcespinning (RF) to synthesize fibers has been done. High speed motor driven centrifugal force becomes a major factor in the formation of fibers. RF apparatus consists of three main parts namely the motor system, the collector, and the heating system that serves to regulate the temperature and humidity around the motor. The liquid polymer was poured in the motor holder and rotated at high speed so that the liquid was dropped from the tip of the needle to the collector in the form of fibers. In this study, the liquid polymer was from waste polystyrene foam (styrofoam) soaked in acetone at a certain ratio. The observation was done with the digital microscope up to 1000 times of magnification. The produced styrofoam fibers were similar to homogeneous and smooth cotton with an average fiber diameter in micrometer. The utilization of waste styrofoam into the fibers is expected to reduce the environmental problems caused by waste styrofoam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-284

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Yun, A.B. Suryamas, F. Iskandar, L. Baoc, H. Niinuma, and K. Okuyama, Morphology optimization of polymer nanofiber for applications in aerosol, Sep. Purif. Technol. 75 (2010) 340-345.

DOI: 10.1016/j.seppur.2010.09.002

Google Scholar

[2] S. Agarwal, J.H. Wendorff, and A. Greiner, Use of electrospinning technique for biomedical applications, Polymer 49 (2008) 5603–5621.

DOI: 10.1016/j.polymer.2008.09.014

Google Scholar

[3] I. Sebea, B. Szabóa, Z.K., Nagyc, D. Szabód, L. Zsidaie, B. Kocsisd, and R. Zelkóa, Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared withhigh-speed rotary spinning technique, Int. J. Pharm. 458 (2013).

DOI: 10.1016/j.ijpharm.2013.10.011

Google Scholar

[4] M.M. Munir, F. Iskandar, M. Djamal, and K. Okuyama, Morphology of controlled electrospun nanofibers for humidity sensor application, AIP Conf. Proc. 1415 (2011) 223-226.

DOI: 10.1063/1.3667261

Google Scholar

[5] F. Iskandar, A.B. Suryamas, M. Kawabe, M.M. Munir, K. Okuyama, T. Tarao, and T. Nishitani, Indium tin oxide nanofiber film electrode for high performance dye sensitized solar cells, Jpn. J. Appl. Phys. 49 (2010) 010213.

DOI: 10.1143/jjap.49.010213

Google Scholar

[6] J.M. Deitzel, J. Kleinmeyer, D. Harris, and N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer. 42 (2000) 261-272.

DOI: 10.1016/s0032-3861(00)00250-0

Google Scholar

[7] X. Fu, F. Li, W. Liu, C. Stefanini, and P. Dario, Experimental research on thermo-direct fiber drawing technique, Microelectron. Eng. 88 (2011) 2653-2656.

DOI: 10.1016/j.mee.2011.02.008

Google Scholar

[8] S. Ramakrishna, K. Fujihara, W.E. Teo, T. C Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers. 2005. Singapore. World Scientific.

Google Scholar

[9] C.J. Ellison, A. Phatak, D. W. Giles, and C. W. Macosko, Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, Polymer 48 (2007) 3306-3316.

DOI: 10.1016/j.polymer.2007.04.005

Google Scholar

[10] Y. Lu, Y. Li, S. Zhang, G. Xu, K. Fu, H. Lee, and X. Zhang, Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process, Eur. Polym. J. 49 (2013) 3834–3845.

DOI: 10.1016/j.eurpolymj.2013.09.017

Google Scholar

[11] M.A. Hassana, B. Y. Yeom, A. Wilkie, B. Pourdeyhimi, and S. A. Khana, Fabrication of nanofiber meltblown membranes and their filtration properties, J. Membrane Sci. 427 (2013) 336-344.

DOI: 10.1016/j.memsci.2012.09.050

Google Scholar

[12] B. Raghavan, H. Soto, and K. Lozano, Fabrication of melt spun polypropylene nanofiber for forcespinning, J. Eng. Fiber Fabr. 8 (2008) 1.

Google Scholar

[13] F.R. Jones, N.T. Huff, The structure and properties of glass fibres: Natural regenerated, inorganic, and specialist fibres, In Handbook of Textile Fiber Structure; Eichhorn, S. J.; Hearle, J. W. S.; Jaffe, M.; Kikutani, T.; eds.; Handbook of Textile Fibre Structure. Vol 2, Woodhead Publishing Limited: New York, (2009).

DOI: 10.1533/9781845697310

Google Scholar

[14] X. Zhang and Y. Lu, Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost, Polym. Rev. 54 (2014) 677–701.

DOI: 10.1080/15583724.2014.935858

Google Scholar

[15] S. Padron, A. Fuentes, D. Caruntu, and K. Lozano, Experimental study of nanofiber production through forcespinning. J. App. Phys. 113 (2013) 024318.

DOI: 10.1063/1.4769886

Google Scholar

[16] M.M. Munir, A. Fauzi, A.Y. Nuryantini, Nursuhud, E. Sofiari, and Khairurrijal, Optimization of solvent system and polymer concentration for synthesis of polyvinyl alcohol (PVA) fiber using rotary forcespinning technique, Proceedings of ICAMST 2014, Solo, Indonesia.

DOI: 10.4028/www.scientific.net/amr.1123.20

Google Scholar

[17] S. Doroudiani and M. T. Kortschot, Polystyrene foams. I. Processing-structure relationships, J. Appl. Polym. Sci. 90 (2003) 5.

DOI: 10.1002/app.12804

Google Scholar

[18] C. Shin and G.G. Chase, Nanofibers from recycle waste expanded polystyrene using natural solvent, Polym. Bull. 55 (2005) 209-(2015).

DOI: 10.1007/s00289-005-0421-2

Google Scholar

[19] C. Shin, G.G. Chase, and D.H. Reneker, Recycled expanded polystyrene nanofibers applied in filter media, Colloid Surface 262 (2005) 211-215.

DOI: 10.1016/j.colsurfa.2005.04.034

Google Scholar