Phonon Properties of Co:TiO2 Single Crystal

Article Preview

Abstract:

Phonon properties of cobalt doped rutile TiO2 single crystal was investigated using a Raman Spectrometer with laser wavelength at 532 nm in the temperature range from 140 K to 750 K. The phonons modes of B1g, Eg, and A1g with the energy of 140 cm-1, 450 cm-1 and 600 cm-1 are clearly observed. The second order phonon process is also observed at the energy of 250 cm-1. The temperature dependence of the A1g, Eg modes become stiffen as lowering the temperature, while the B1g mode becomes soften. The temperature dependence of the B1g is found to be a signature as the effect of doping. Based on the harmonic model, this is explained due to the change the Ti-O coupling strengths of TiO6 octahedral. A larger change is found for the longer distance of the Ti-O bond.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-365

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Collett, Polarized Light in Fiber Optics. SPIE Press, 2003: pp.253-254.

Google Scholar

[2] Y. Ye, Synthesis and Characterization of Nanostructured TiO2 With Revese Micelle Technique. University of New South Wales, 2011: pp.28-29.

Google Scholar

[3] J. G. Li, R.B., M. Isobe, T. Mori, dan T. Ishigaki, Cobalt Doped TiO2 Nanocrystallites: Radio-Frequency Thermal Plasme Precessing, Phase Structure, and Magnetic properties. Phys. Chem. C., 2009: 113: pp.8009-8015.

DOI: 10.1021/jp8080047

Google Scholar

[4] W.T. Geng, and K.S. Kim, Structural, electronic, and magnetic properties of a ferromagnetic semiconductor: Co-doped rutile. Physical Review B 68(12), 2003: p.125203.

Google Scholar

[5] Sudesh Sharma, Sujeet Chaudhary, Subhash C. Kashyap, and Shiv K. Sharma, Room temperature ferromagnetism in Mn doped TiO2 thin films: Electronic structure and Raman investigations. Journal of Applied Physics 109(8), 2011: p.083905.

DOI: 10.1063/1.3567938

Google Scholar

[6] J. Ferraro, Introductory Raman Spectroscopy. Academic Press, 2002: p.350.

Google Scholar

[7] J. Nowotny, T. Bak, and T. Burg, phys. stat. sol. (b) 244, 2007: p.2037 – (2054).

Google Scholar

[8] S. Riyadi, Muafif, A. A. Nugroho, A. Rusydi, M.O. Tjia, Mn-dopant induced effect in Zn1-xMnxO compounds, Phys. Condensed Matter 19, 2007: p.476241.

DOI: 10.1088/0953-8984/19/47/476214

Google Scholar

[9] R. J. Betsch, H.L. Park, dan W. B. White, Raman Spectra of Stoichiometric and Defect Rutile. Mat. Res. Bull 26, 1991: pp.613-622.

DOI: 10.1016/0025-5408(91)90104-t

Google Scholar

[10] S. P. S. Porto, P.A.F., and T.C. Damen, Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Bell Telephone Laboratories, (1996).

Google Scholar

[11] F. Matossi, The Vibration Spectrum of Rutile. The Journal of Chemical Physics, 1951. 19(12).

Google Scholar

[12] H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Raman Study of Phase Transformation of TiO2 Rutile Single Crystal Irradiated by Infrared Femtosecond Laser. Elsevier 253, 2007: pp.7497-7500.

DOI: 10.1016/j.apsusc.2007.03.047

Google Scholar

[13] Tian Lan, Xiaoli Tang, and Brent Fultz, Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations, Physical Review B 85, 2012: p.094305.

DOI: 10.1103/physrevb.85.094305

Google Scholar