[1]
K. Nagamine, T. Matsuzaki, K. Ishida, I. Watanabe, R. Kadono, G.H. Eaton, H.J. Jones, G. Thomas, and W.G. Williams, Construction of RIKEN-RAL muon facility at ISIS and advanced μSR, Hyperfine Interact. 87 (1994) 1091.
DOI: 10.1007/bf02068509
Google Scholar
[2]
Y.J. Uemura, W.J. Kossler, X.H. Yu, J.R. Kempton, H.E. Schone, D. Opie, C.E. Stronach, D.C. Johnston, M.S. Alvarez, and D. P. Goshorn, Antiferromagnetism of La2CuO4−y studied by muon-spin rotation, Phy. Rev. Lett. 59 (1987) 1045.
DOI: 10.1007/978-1-4613-1937-5_91
Google Scholar
[3]
R. Saito, H. Kamimura, and K. Nagamine, Theory of positive muon spin rotation in La2CuO4, Physica C 185-189 (1991) 1217.
DOI: 10.1016/0921-4534(91)91832-o
Google Scholar
[4]
T. McMillen, P. Jena, and S.N. Kahnna, Screening of a positive muon by a semion gas, Int. J. Mod. Phys. B 5 (1991) 1579.
Google Scholar
[5]
B. Hitti, P. Birrer, K. Fischer, F.N. Gygax, L. Lippelt, H. Maletta, A. Schenck, and M. Weber, Study of La2CuO4 and related compounds by μSR, Hyperfine Interact. 63 (1990) 287.
DOI: 10.1007/bf02396016
Google Scholar
[6]
E. Torikai, K. Nagamine, H. Kitazawa, I. Tanaka, H. Kojima, S.B. Sulaiman, S. Srinivas, and T.P. Das, Behavior of positive muons in high TC superconductors La2−xSr x CuO4, Hyperfine Interact. 79 (1993) 921.
DOI: 10.1007/bf00567628
Google Scholar
[7]
S.B. Sulaiman, N. Shaoo, S. Srinivas, F. Hagelberg, T.P. Das, E. Torikai, and K. Nagamine, Theory of location and associated hyperfine properties of the positive muon in La2CuO4, Hyperfine Interact. 84 (1994) 87.
DOI: 10.1007/bf02060647
Google Scholar
[8]
H. Maeter, H. Luetkens, Yu.G. Pashkevich, A. Kwadrin, R. Khasanov, A. Amato, A.A. Gusev, K.V. Lamonova, D.A. Chervinskii, R. Klingeler, C. Hess, G. Behr, B. Büchner, and H. -H. KlaussPhys, Interplay of rare earth and iron magnetism in RfeAsO (R=La, Ce, Pr, and Sm): Muon-spin relaxation study and symmetry analysis, Rev. B80 (2009).
DOI: 10.1103/physrevb.80.094524
Google Scholar
[9]
W. Huang, V. Pacradouni, M. P. Kennett, S. Komiya, and J. E. Sonier, Precision search for magnetic order in the pseudogap regime of La2−xSrxCuO4 by muon spin relaxation, Phys. Rev. B 85 (2012) 104527.
Google Scholar
[10]
B. Adiperdana, I.A. Dharmawan, R.E. Siregar, I. Watanabe, K. Ohishi, Y. Ishii, T. Suzuki, T. Kawamata, Risdiana, R. Sheuermann, K. Sedlak, Y. Tomioka, T. Waki, Y. Tabata, and H. Nakamura, Muon Sites Estimation in La2CuO4 and A New Vanadium Cluster Compound, V4S9Br4, using Electronic and Dipole Field Calculations, Physics Procedia 30 (2012).
DOI: 10.1016/j.phpro.2012.04.051
Google Scholar
[11]
E. Stilp, A. Suter, T. Prokscha, E. Morenzoni, H. Keller, B.M. Wojek, H. Luetkens, A. Gozar, G. Logvenov, and I. Božović, Magnetic phase diagram of low-doped La2−xSrxCuO4 thin films studied by low-energy muon-spin rotation, Phys. Rev. B 88 (2013).
DOI: 10.1103/physrevb.88.064419
Google Scholar
[12]
B. Adiperdana, I.A. Dharmawan, R.E. Siregar, S. Sulaiman, M. I M. Ibrahim, and I. Watanabe, Muon Site Estimation on La2CuO4 Using Dipole Field and Density Functional Theory Calculation, AIP Conf. Proc. 1554 (2013) 214.
DOI: 10.1063/1.4820323
Google Scholar
[13]
B. Adiperdana, E. Suprayoga, N. Adam, Mohm-Tajudin S.S., Rozlan A.F., S. Sulaiman, M.I. Mohamed-Ibrahim, T. Kawamata, T. Adachi, I.A. Dharmawan, R.E. Siregar, Y. Koike, and I. Watanabe, An Effect of the Super-Cell Calculation on Muon Positions and Local Deformations of Crystal Structure in La2CuO4, J. Phys. Conf. Ser. 551, (2014).
DOI: 10.1088/1742-6596/551/1/012051
Google Scholar
[14]
F. Bernaridini, P. Bonfà, S. Massidda, and R. De Renzi, Ab initio strategy for muon site assignment in wide band gap fluorides, Phys. Rev. B 87 (2013) 115148.
DOI: 10.1103/physrevb.87.115148
Google Scholar
[15]
G. Kresse and J. Futhmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[16]
G. Kresse and J. Futhmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[17]
P.E. Bloch, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.
Google Scholar
[18]
C.N.R. Rao, A.K. Cheetham, and A. Thirumurugan, Hybrid inorganic–organic materials: a new family in condensed matter physics, J. Phys. Cond. Matter. 20 (2008) 15981.
DOI: 10.1088/0953-8984/20/8/083202
Google Scholar
[19]
A.I. Tursina, S.N. Nesterenko. E.V. Murashova, I.V. Chernyshev, H. Noel, and Y.D. Seropegin, CeRu2Al10 with the YbFe2Al10 structure type, l Acta Crystallogr. Sect E 61 i12 (2005).
DOI: 10.1107/s1600536805000310
Google Scholar
[20]
H. Tanida, D. Tanaka, M. Sera, S. Tanimoto, T. Nishioka, M. Matsumura, M. Ogawa, C. Moriyoshi, Y. Kuroiwa, J. E. Kim, N. Tsuji, and M. Takata, Electronic structure and localized lanthanide character of LnT2Al10 (T = Ru, Os), Phys. Rev. B 84 (2011).
DOI: 10.1103/physrevb.84.115128
Google Scholar
[21]
M. Sera, D. Tanaka, H. Tanida, C. Moriyoshi, M. Ogawa, Y. Kuroiwa, T. Nishioka, M. Matsumura, J. Kim, N. Tsuji, and M. Takata, Crystal Structure and Anisotropic c–f Hybridization in CeT2Al10 (T=Ru, Fe), J. Phys. Soc. Jpn. 82 (2013) 024603.
DOI: 10.7566/jpsj.82.024603
Google Scholar
[23]
H. Tanida, Y. Nonaka, D. Tanaka, M. Sera, Y. Kawamura, Y. Uwatoko, T. Nishioka, and M. Matsumura, Magnetic anisotropy of Kondo semiconductor CeT2Al10 (T=Ru, Os) in the ordered state, Rev. B 85 (2012) 205208.
Google Scholar
[23]
S. Kambe, H. Chudo, Y. Tokunaga, T. Koyama, H. Sakai, T. U. Ito, K. Ninomiya, W. Higemoto, T. Takesaka, T. Nishioka, and Y. Miyake, Evidence for Appearance of an Internal Field in the Ordered State of CeRu2Al10 by μ+SR, J. Phys. Soc. Jpn. 79 (2010).
DOI: 10.1143/jpsj.79.053708
Google Scholar
[24]
D.D. Khalyavin, A.D. Hillier, D.T. Adroja, A.M. Strydom, P. Manuel, L.C. Chapon, P. Peratheepan, K. Knight, P. Deen, C. Ritter, Y. Muro, and T. Takabatake, Long-range magnetic order in CeRu2Al10 studied via muon spin relaxation and neutron diffraction, Phys. Rev. B. 82 (2010).
DOI: 10.1103/physrevb.82.100405
Google Scholar
[25]
H. Guo, H. Tanida, R. Kobayashi, I. Kawasaki, M. Sera, T. Nishioka, M. Matsumura, I. Watanabe, Zhu-an Xu, Magnetic instability induced by Rh-doping in Kondo semiconductor CeRu2Al10, Phys. Rev. B 88 (2013) 115206.
DOI: 10.1103/physrevb.88.115206
Google Scholar
[26]
N. Adam, E. Suprayoga, B. Adiperdana, H. Guo, H. Tanida, S.S. Mohd-Tajudin, R. Kobayashi, M. Sera, T. Nishioka, M. Matsumura, S. Sulaiman, M.I. Mohamed Ibrahim, and I. Watanabe, Muon sites in Ce(Ru, Rh)2Al10 investigated by using Density Functional Theory from the view point of electronic potential, J. Phys. Conf. Ser. 551, (2014).
DOI: 10.1088/1742-6596/551/1/012053
Google Scholar
[27]
S. Kimura, T. Iizuka, H. Miyazaki, T. Hajiri, M. Matsunami, T. Mori, A. Irizawa, Y. Muro, J. Kajino, and T. Takabatake, Optical study of charge instability in CeRu2Al10 in comparison with CeOs2Al10 and CeFe2Al10, Phys. Rev. B 84 (2011) 165125.
Google Scholar
[28]
A. Kondo, J. Wang, K. Kindo, T. Takesaka, Y. Ogane, Y. Kawamura, T. Nishioka, D. Tanaka, H. Tanida, and M. Sera, Magnetization and Magnetoresistance of CeRu2Al10 under High Magnetic Fields along c-Axis, J. Phys. Soc. Jpn. 80 (2011) 013701.
DOI: 10.1143/jpsj.80.013701
Google Scholar
[29]
N. Nishida, H. Miyatake, D. Shimada, S. Ohkuma, M. Ishikawa, T. Takabatake, Y. Nakazawa, Y. Kuno, R. Keitel, J.H. Brewer, T.M. riseman, D.L. Williams, Y. Watan, First Observation of an Antiferromagnetic Phase in the YBa2Cu3Ox System. Jpn. J. Appl. Phys. 26 (1987).
DOI: 10.1143/jjap.26.l1856
Google Scholar
[31]
S.S. Mohd-Tajudin, S.N.A. Ahmad, D.F. Hasan-Baseri, E. Suprayoga, N. Adam, Rozlan A.F., S. Sulaiman, M.I. Mohamed-Ibrahim, and I. Watanabe, An Investigation of Muon Sites in YBa2Cu3O6 by Using Density Functional Theory, J. Phys. Conf. Ser. 551, 012052-1-6 (2014).
DOI: 10.1088/1742-6596/551/1/012052
Google Scholar
[31]
W. Estes, D. Bruce Losee1 and William E. Hatfield1 , The magnetic properties of several quasi two‐dimensional Heisenberg layer compounds: A new class of ferromagnetic insulators involving halocuprates, J. Chem. Phys. 72 (1969) 630.
DOI: 10.1063/1.438953
Google Scholar
[32]
L.J. De Jongh, A.C. Botterman, F.R. de Boer and A.R. Miedema, Transition Temperature of the Two‐Dimensional Heisenberg Ferromagnet with S=½, J. Appl. Phys. 40 (1969) 1363.
DOI: 10.1063/1.1657668
Google Scholar
[33]
D.I. Khomskii, and K.I. Kugel, Orbital and magnetic structure of two-dimensional ferromagnets with Jahn-Teller ions, Solid State Commun. 13 (1973) 763.
DOI: 10.1016/0038-1098(73)90362-1
Google Scholar
[34]
E. Suprayoga, A.A. Nugroho, A.O. Polyakov, T.T.M. Palstra, and I. Watanabe, Search for Potential Minimum Positions in Metal-Organic Hybrids, (C2H5NH3)2CuCl4 and (C6H5CH2CH2NH3)2CuCl4, by Using Density Functional Theory, J. Phys. Conf. Ser. 551, 012054-1-6 (2014).
DOI: 10.1088/1742-6596/551/1/012054
Google Scholar
[35]
E. Roduner E, and J.C. Walton J C, The Positive Muon As a Probe in Free Radical Chemistry, Springer-Verlag, Berlin, (1988).
DOI: 10.1002/mrc.1260270518
Google Scholar
[36]
E. Suprayoga, unpublished.
Google Scholar