Modeling Process of Spark Plasma Sintering of Powder Materials by Finite Element Method

Article Preview

Abstract:

This paper investigates and analyses use of numerical modeling by finite element method (FEM) at studying of consolidation processes of materials from powder by spark plasma sintering (SPS). Tasks of SPS process optimization is discussed in detail. Examples of numeric analysis of SPS of current conducting and non-conducting materials are given. Numeric modeling of sample sintering with hybrid method when SPS process is combined with hot pressing (HP) process is studied. Also paper presents development prospects of principles of SPS process numeric modeling.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Suárez M., Fernández A., Menéndez J.L., Torrecillas R., Kessel H. U., Hennicke J., Kirchner R., Kessel T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. Sintering Applications (2013).

DOI: 10.5772/53706

Google Scholar

[2] Orru R., Licheri R., Mario Locci A., Cincotti A., Cao G. Consolidation/synthesis of materials by electric current activated/assisted sintering. Materials Science and Engineering (2009).

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[3] Hennicke J, Kessel. H.U. Field Assisted Sintering Technology (FAST, ) for the consolidation of innovative materials. Ber. DKG (2004).

Google Scholar

[4] Guillon O., Gonzalez-Julian J., Dargatz B., Kessel T., Schierning G., Rathel J., Herrmann M. Field-Assisted Sintering Technology. Spark Plasma Sintering: Mechanisms. Materials, and Technology Developments. Advanced engineering materials (2014).

DOI: 10.1002/adem.201300409

Google Scholar

[5] Diaz L.A., Montes-Moran M.A., Peretyagin P.Y., Vladimirov Y.G., Okunkova A., Moya J.S., Torrecillas R. Zirconia-Alumina-Nanodiamond composites with gemological properties / L.A. Diaz, M.A. Montes-Moran, P.Y. Peretyagin, Y.G. Vladimirov, A. Okunkova, J.S. Moya, R. Torrecillas. Journal of Nanoparticle Research (2014).

DOI: 10.1007/s11051-014-2257-x

Google Scholar

[6] McWilliams B., Zavaliangos A., Cho K. C., Dowding R. J. The Modeling of Electric Current Assisted Sintering to Produce Bulk Nanocrystalline Tungsten / B. McWilliams, A. Zavaliangos, K. C. Cho, R. J. Dowding / JOM. 2006, 58, 67–71 p.

DOI: 10.1007/s11837-006-0218-2

Google Scholar

[7] Anselmi-Tamburini U., Gennari S., Garay J. E., Munir Z. A. Fundamental Investigations on the Spark Plasma Sintering/Synthesis Process - II. Modeling of Current and Temperature Distributions / U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z. A. Munir / Mat. Sci. Eng. A – Struct. 2005, 394, 139–48 p.

DOI: 10.1016/j.msea.2004.11.019

Google Scholar

[8] Vanmeensel K., Laptev A. Modelling of the temperature distribution during field assisted sintering. Acta Materialia (2005).

DOI: 10.1016/j.actamat.2005.05.042

Google Scholar

[9] Tiwari D., Basu B., Biswas K. Simulation of thermal and electric field evolution during spark plasma sintering. Ceramics International. 35 (2009) 699–708.

DOI: 10.1016/j.ceramint.2008.02.013

Google Scholar

[10] Mol´enat G., Durand L., Galy J., Couret A. Temperature Control in Spark Plasma Sintering: An FEM Approach. Journal of Metallurgy (2010).

DOI: 10.1155/2010/145431

Google Scholar