Hot Forming of Mg AZ31B Alloy Sheet Processed by Warm Rolling

Article Preview

Abstract:

Mg alloy AZ31B is of interest for hot forming because it can achieve a superplastic response at high temperatures and slow strain rates. As temperature decreases and forming rate increases, its strain-rate sensitivity decreases and significant plastic anisotropy can arise. These effects are the result of a transition in deformation mechanisms from grain-boundary-sliding (GBS) to dislocation-climb (DC) creep. However, sheet production using warm rolling can produce a material with a smaller grain size and weaker basal texture. These microstructural changes promote GBS creep and decrease the degree of anisotropy under DC creep. Microstructural and tensile data are presented to show these effects at 350 and 450C through comparisons to a similar material having a more usual microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

157-165

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Ward Flynn, J. Mote, J. E. Dorn, On the thermally activated mechanism of prismatic slip in magnesium single crystals, Trans. AIME 221 (1961) 1148-1154.

Google Scholar

[2] G. I. Taylor, Plastic strain in metals, J. Inst. Metals 62 (1938) 307-324.

Google Scholar

[3] E. W. Kelley, W. F. Hosford, Jr., Plane-strain compression of magnesium and magnesium alloy crystals, Trans. AIME 242 (1968) 5-13.

Google Scholar

[4] A. R. Antoniswamy, E. M. Taleff, L. G. Hector, Jr., J. T. Carter, Plastic deformation and ductility of magnesium AZ31B-H24 alloy sheet from 22 to 450 �C, Mater. Sci. Engnrg. A 631 (2015) 1-9.

DOI: 10.1016/j.msea.2015.02.018

Google Scholar

[5] B. Hutchinson, M. R. Barnett, A. Ghaderi, P. Cizek, I. Sabirov, Deformation modes and anistropy in magnesium alloys AZ31, Inter. J. Mater. Res. (Z. Metall. ) 100 (2009) 556-563.

DOI: 10.3139/146.110070

Google Scholar

[6] N. Stanford and P. S. Sotoudeh, K. Bate, Deformation mechanisms and plastic anisotropy in magnesium alloy AZ31, Acta Mater. 5 (2011) 4866-4874.

DOI: 10.1016/j.actamat.2011.04.028

Google Scholar

[7] J. Min, Y. Cao, J. T. Carter, R. Verma, Comparison of tensile properties and crystallographic textures of three magnesium alloy sheets, in: S. N. Mathaudhu, W. H. Sillekens, N. R. Neelameggham, N. Hort (Eds. ) Magnesium Technology 2012, TMS/Wiley, Warrendale, PA, 2012, pp.355-360.

DOI: 10.1002/9781118359228.ch65

Google Scholar

[8] http: /www. aist. go. jp/aist_e/latest_research/2010/20100217/20100217. html.

Google Scholar

[9] ASTM International, Standard test methods for determining average grain size, Standard Designation E 112-96, ASTM International, West Conshohocken, PA, July (1996).

Google Scholar

[10] W. Köster, Die temperaturabhängigkeit des elastizitätsmoduls reiner metalle, Z. Metall. 39 (1948) 1-9.

Google Scholar

[11] C. R. Barrett, A. J. Ardell, O. D. Sherby, Influence of modulus on the temperature dependence of the activation energy for creep at high temperatures, Trans. AIME 230 (1964) 200-204.

Google Scholar

[12] O. D. Sherby, P. M. Burke, Mechanical behavior of crystalline solids at elevated temperature, Prog. Mater. Sci. 13 (1968) 325-390.

Google Scholar

[13] C. Zener, J. H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phy. 15 (1944) 22-32.

DOI: 10.1063/1.1707363

Google Scholar