High-Temperature Plasticity in Super Hard Boron Carbide Ceramics

Article Preview

Abstract:

Boron carbide-based ceramics will be probably the most promising materials during the next decades due to their excellent mechanical properties combined with its chemical stability and low-density. Boron carbide itself is a very challenging system because of its complicated but highly-symmetrical crystallographic structure. Room-temperature mechanical properties of pure boron carbide have deserved considerable attention due to its remarkable hardness and resistance to shock-impact; however, its high-temperature plasticity with unsual ductility remains unexplored. The high-temperature creep of pure B4C polycrystals and the microsturctural observation were performed to find the mechanism of deformation in this material.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

166-170

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Domnich, S. Reynaud, R. A. Haber, M. Chhowalla M, Boron carbide: structure, properties and stability under stress, J Am Ceram Soc, 94 (2011) 3605-3628.

DOI: 10.1111/j.1551-2916.2011.04865.x

Google Scholar

[2] F. Thévenot , Boron carbide-a comprehensive review, J Eur Ceram Soc, 6 (1990) 205-225.

Google Scholar

[3] A. K. Suri, C. Subramanian, J. K. Sonber, T. S. Murthy, Synthesis and consolidation of boron carbide: a review, Int. Mat. Rev, 55 (2010) 4-40.

DOI: 10.1179/095066009x12506721665211

Google Scholar

[4] S. Hayun, V. Paris, M. P. Dariel, N. Frage, E. Zaretzky, Static and dynamic mechanical properties of boron carbide prepared by spark plasma sintering, J Eur Ceram Soc, 29 (2009) 3395-3400.

DOI: 10.1016/j.jeurceramsoc.2009.07.007

Google Scholar

[5] D. Ghosh, G. Subhash, T. S. Sudarshan, R. Radhakrishnan, X. L. Gao, Dynamic indentation response of fine-grained boron carbide, J Am Ceram Soc, 90 (2007)1850-1857.

DOI: 10.1111/j.1551-2916.2007.01652.x

Google Scholar

[6] B. M. Moshtaghioun, F. L. Cumbrera-Hernández, D. Gómez-García, S. de Bernardi-Martín, A. Domínguez-Rodríguez A, Monshi, M. H. Abbasi, Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C), J. Eur. Ceram. Soc, 33 (2013).

DOI: 10.1016/j.jeurceramsoc.2012.08.028

Google Scholar

[7] K. Madhav Reddy, J. J. Gua, Y. Shinoda, T. Fujita, A. Hirata, J. P. Singh, J. M. McCauley, and M. W. Chen. Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases. Nat. Commun. 3: 1052 doi: 10. 1038/ncomms2047 (2012).

DOI: 10.1038/ncomms2047

Google Scholar

[8] M. W. Chen, , J. W. McCauley, & K. J. Hemker. Shock-induced localized amorphization in boron carbide. Science 299, ( 2003) 1563–1566.

DOI: 10.1126/science.1080819

Google Scholar

[9] I. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, P. Lobodo P, Microstructure and high-temperature strength of B4C-TiB2 composite prepared by a crucibleless zone melting method, J. Alloys and Comp. 485 (2009), 677-681.

DOI: 10.1016/j.jallcom.2009.06.044

Google Scholar

[10] S. Yamada, K. Hirao, Y. Yamaguchi, S. Kanzaki, High strength B4C-TiB2 composites fabricated by reaction hot-pressing, J. Eur. Ceram. Soc. 23 (2003) 313-318.

DOI: 10.1016/s0955-2219(02)00274-1

Google Scholar

[11] T. G. Abzianidze, A. M. Eristavi, S. O. Shalamberidze, Strength and creep in boron carbide (B4C) and aluminium dodecaboride (aAlB12), J. Solid State Chem, 154 (2000) 191-193.

DOI: 10.1006/jssc.2000.8834

Google Scholar

[12] B. M. Moshtaghioun, D. Gómez-García, A. Domínguez-Rodríguez, N. P. Padture., High-temperature creep deformation of coarse-grained boron carbide ceramics, J. Eur. Ceram. Soc, 35 (2015) 1423-1429.

DOI: 10.1016/j.jeurceramsoc.2014.11.001

Google Scholar

[13] D. Gomez-Garcia, J. Martinez-Fernandez., A. Dominguez-Rodriguez, P. Eveno , J. Castaing, Deformation mechanisms for high-temperature creep of high yttria content stabilized zirconia single crystals. Acta. Mater. 44, (1996) 991-999.

DOI: 10.1016/1359-6454(95)00254-5

Google Scholar

[14] J. E. Dorn, Some fundamental experiments on high temperature creep. J. Mech. Phys. Solids. 8 (1954) 85-116.

Google Scholar