[1]
T,G. Langdon, The mechanical properties of superplastic materials, Metall. Mater. Trans. A 13A (1982) 689-701.
Google Scholar
[2]
T,G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.
DOI: 10.1016/0956-7151(94)90322-0
Google Scholar
[3]
T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, University Press, Cambridge, UK, (1997).
Google Scholar
[4]
R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[5]
R.Z. Valiev, Y. Estrin, Z. Horita, T,G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39.
DOI: 10.1007/s11837-006-0213-7
Google Scholar
[6]
Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Factors Influencing the Equilibrium Grain Size in Equal-Channel Angular Pressing: Role of Mg Additions to Aluminum, Metall. Mater. Trans., 29A (1998) 2503-2510.
DOI: 10.1007/s11661-998-0222-y
Google Scholar
[7]
Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G. Langdon, An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron Microscopy, J. Mater. Res. 11 (1996) 1880-1890.
DOI: 10.1557/jmr.1996.0239
Google Scholar
[8]
P.W. Bridgman, Effects of High Shearing Stress Combined with High Hydrostatic Pressure, Phys. Rev. 48 (1935) 825-847.
DOI: 10.1103/physrev.48.825
Google Scholar
[9]
T. Fujioka, Z. Horita, Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular Metallic Sheets, Mater. Trans. 50 (2009) 930-933.
DOI: 10.2320/matertrans.mrp2008445
Google Scholar
[10]
T. Waitz, V. Kazykhanov, H.P. Karnthaler, Martensitic phase transformations in nanocrystalline NiTi studied by TEM, Acta Mater. 52 (2004) 137-147.
DOI: 10.1016/j.actamat.2003.08.036
Google Scholar
[11]
K. Edalati, J. Matsuda, H. Iwaoka, S. Toh, E. Akiba, Z. Horita, High-pressure torsion of TiFe intermetallics: Activation for hydrogen storage at room temperature, heterogeneous nanostructure and ultrahigh hardness, Int. J. Hydrogen Energy 38 (2013).
DOI: 10.1016/j.ijhydene.2013.01.185
Google Scholar
[12]
Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, Z. Horita, Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101(2012) 121908 1-4.
DOI: 10.1063/1.4754574
Google Scholar
[13]
K. Edalati, S. Toh, Y. Ikoma, Z. Horita, Plastic deformation and allotropic phase transformations in zirconia ceramics during highpressure torsion, Scripta Mater., 65 (2011) 974-977.
DOI: 10.1016/j.scriptamat.2011.08.024
Google Scholar
[14]
S. Lee, K. Tazoe, I.F. Mohamed, Z. Horita, Strengthening of AA7075 alloy by processing with high-pressure sliding (HPS) and subsequent aging, Mater. Sci. Eng. A628 (2015) 56-61.
DOI: 10.1016/j.msea.2015.01.026
Google Scholar
[15]
Y. Harai, Y. Ito, Z. Horita, High Pressure Torsion Using Ring Specimens, Scripta Materi. 58 (2008) 469-482.
DOI: 10.1016/j.scriptamat.2007.10.037
Google Scholar
[16]
T. Masuda, K. Fujimitsu, Y. Takizawa, Z. Horita, High-Pressure Sliding Using Rod Samples for Grain Refinement and Superplasticity in Al and Mg Alloys, Letters on Materials, (2015) in press.
DOI: 10.22226/2410-3535-2015-3-258-263
Google Scholar
[17]
K. Edalati, Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci. 45 (2010) 4578-4582.
DOI: 10.1007/s10853-010-4381-z
Google Scholar
[18]
K. Edalati, Z. Horita, Continuous High-Pressure Torsion Using Wires, J. Mater. Sci. 47 (2012) 473-478.
DOI: 10.1007/s10853-011-5822-z
Google Scholar
[19]
G. Sakai, K. Nakamura, Z. Horita, T.G. Langdon, Developing high-pressure torsion for use with bulk samples, Mater. Sci. Eng. A406 (2005) 268-273.
DOI: 10.1016/j.msea.2005.06.049
Google Scholar
[20]
A. Hohenwarter, Incremental high pressure torsion as a novel severe plastic deformation process: Processing features and application to copper, Mater. Sci. Eng. A626 (2015) 80-85.
DOI: 10.1016/j.msea.2014.12.041
Google Scholar
[21]
L.S. Toth, M. Arzaghi, J.J. Fundenberger, B. Beausir, O. Bouaziz, R. Arruffat-Massion, Severe plastic deformation of metals by high-pressure tube twisting, Scr. Mater. 60 (2009) 175-177.
DOI: 10.1016/j.scriptamat.2008.09.029
Google Scholar
[22]
J. T. Wang, Z. Li, J. Wang, T.G. Langdon, Principles of severe plastic deformation using tube high-pressure shearing, Scr. Mater. 67 (2012) 810-813.
DOI: 10.1016/j.scriptamat.2012.07.028
Google Scholar
[23]
R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Plastic deformation of alloys with submicron- grained structure, Mater. Sci. Eng. A137 (1991) 35-40.
DOI: 10.1016/0921-5093(91)90316-f
Google Scholar
[24]
R.Z. Valiev, C. Song, S.X. McFadden, A.K. Mukherjee, R.S. Mishra, TEM/HREM observations of nanostructured superplastic Ni3Al, Philos. Mag. A81 (2001) 25–36.
DOI: 10.1080/01418610108216615
Google Scholar
[25]
S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon, Influence of Scandium on Superplastic Ductilities in an Al-Mg-Sc Alloy, J. Mater. Res. 15 (2000) 2571-2576.
DOI: 10.1557/jmr.2000.0367
Google Scholar
[26]
G. Sakai, Z. Horita and T.G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A393 (2005) 344-351.
DOI: 10.1016/j.msea.2004.11.007
Google Scholar
[27]
Y. Harai, K. Edalati, Z. Horita and T. G. Langdon, Using ring samples to evaluate the processing characteristics in high-pressure torsion, Acta Mater. 57 (2009) 1147-1153.
DOI: 10.1016/j.actamat.2008.10.046
Google Scholar
[28]
Z. Horita and T. G. Langdon, Achieving Exceptional Superplasticity in a Bulk Aluminum Alloy Processed by High-Pressure Torsion, Scripta Mater., 58 (2008) 1029-1032.
DOI: 10.1016/j.scriptamat.2008.01.043
Google Scholar
[29]
M. Kai, Z. Horita, and T G. Langdon, Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A488 (2008) 117–124.
DOI: 10.1016/j.msea.2007.12.046
Google Scholar
[30]
A. Alhamidi and Z. Horita, Grain refinement and high strain rate superplasticity in aluminum 2024 alloy processed by high-pressure torsion, Mater. Sci. Eng. A622 (2015) 139-145.
DOI: 10.1016/j.msea.2014.11.009
Google Scholar
[31]
M. Ashida, P. Chen, H. Doi, Y. Tsutsumi, T. Hanawa, Z. Horita, Superplasticity in Ti-6Al-7Nb alloy processed by high-pressure torsion, Mater. Sci. Eng. A640 (2015) 449-453.
DOI: 10.1016/j.msea.2015.06.020
Google Scholar
[32]
H. Matsunoshita, K. Edalati, M. Furui, Z. Horita, Ultrafine-Grained magnesium-lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming, Mater. Sci. Eng. A640 (2015) 443-448.
DOI: 10.1016/j.msea.2015.05.103
Google Scholar
[33]
S. Lee, Z. Horita, Superplasticity of ultrafine-grained 7075 alloy processed by high-pressure torsion, Mater. Sci. Forum 794-796 (2014) 807-810.
DOI: 10.4028/www.scientific.net/msf.794-796.807
Google Scholar
[34]
K. Tazoe, S. Honda and Z. Horita, Application of High-Pressure Sliding for Grain Refinement of Al and Mg Alloys, Mater. Sci. Forum 667-669 (2011) 91-96.
DOI: 10.4028/www.scientific.net/msf.667-669.91
Google Scholar
[35]
T. Masuda, K. Fujimitsu, Y. Takizawa, Z. Horita, Achieving Superplasticity through Grain Refinement of A2024 Alloy Using High-Pressure Sliding, J. Japan Inst. Light Metals 65 (2015) in press.
DOI: 10.2464/jilm.65.319
Google Scholar