Severe Plastic Deformation under High Pressure for Production of Superplastic Materials

Article Preview

Abstract:

Grain refinement is an important prerequisite for advent of superplasticity. In particular, as the grain size is smaller, the superplasticity appears at higher strain rates and lower temperatures. Severe plastic deformation (SPD) is a useful process for achieving significant grain refinement. This presentation shows that applicability of the SPD process is enhanced when it is operated under high pressure through high-pressure torsion (HPT) and high-pressure sliding (HPS). It is demonstrated that commercially available conventional alloys but less ductile alloys such as Mg alloys, age-hardenable high-strength Al alloys (A2024, A7075) and Ti alloys become superplastic after processing by HPT or HPS.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

287-293

Citation:

Online since:

January 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T,G. Langdon, The mechanical properties of superplastic materials, Metall. Mater. Trans. A 13A (1982) 689-701.

Google Scholar

[2] T,G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[3] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, University Press, Cambridge, UK, (1997).

Google Scholar

[4] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[5] R.Z. Valiev, Y. Estrin, Z. Horita, T,G. Langdon, M.J. Zehetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM 58(4) (2006) 33-39.

DOI: 10.1007/s11837-006-0213-7

Google Scholar

[6] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Factors Influencing the Equilibrium Grain Size in Equal-Channel Angular Pressing: Role of Mg Additions to Aluminum, Metall. Mater. Trans., 29A (1998) 2503-2510.

DOI: 10.1007/s11661-998-0222-y

Google Scholar

[7] Z. Horita, D. J. Smith, M. Furukawa, M. Nemoto, R. Z. Valiev, T. G. Langdon, An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron Microscopy, J. Mater. Res. 11 (1996) 1880-1890.

DOI: 10.1557/jmr.1996.0239

Google Scholar

[8] P.W. Bridgman, Effects of High Shearing Stress Combined with High Hydrostatic Pressure, Phys. Rev. 48 (1935) 825-847.

DOI: 10.1103/physrev.48.825

Google Scholar

[9] T. Fujioka, Z. Horita, Development of High-Pressure Sliding Process for Microstructural Refinement of Rectangular Metallic Sheets, Mater. Trans. 50 (2009) 930-933.

DOI: 10.2320/matertrans.mrp2008445

Google Scholar

[10] T. Waitz, V. Kazykhanov, H.P. Karnthaler, Martensitic phase transformations in nanocrystalline NiTi studied by TEM, Acta Mater. 52 (2004) 137-147.

DOI: 10.1016/j.actamat.2003.08.036

Google Scholar

[11] K. Edalati, J. Matsuda, H. Iwaoka, S. Toh, E. Akiba, Z. Horita, High-pressure torsion of TiFe intermetallics: Activation for hydrogen storage at room temperature, heterogeneous nanostructure and ultrahigh hardness, Int. J. Hydrogen Energy 38 (2013).

DOI: 10.1016/j.ijhydene.2013.01.185

Google Scholar

[12] Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q. Guo, Z. Horita, Phase transformation and nanograin refinement of silicon by processing through high-pressure torsion, Appl. Phys. Lett. 101(2012) 121908 1-4.

DOI: 10.1063/1.4754574

Google Scholar

[13] K. Edalati, S. Toh, Y. Ikoma, Z. Horita, Plastic deformation and allotropic phase transformations in zirconia ceramics during highpressure torsion, Scripta Mater., 65 (2011) 974-977.

DOI: 10.1016/j.scriptamat.2011.08.024

Google Scholar

[14] S. Lee, K. Tazoe, I.F. Mohamed, Z. Horita, Strengthening of AA7075 alloy by processing with high-pressure sliding (HPS) and subsequent aging, Mater. Sci. Eng. A628 (2015) 56-61.

DOI: 10.1016/j.msea.2015.01.026

Google Scholar

[15] Y. Harai, Y. Ito, Z. Horita, High Pressure Torsion Using Ring Specimens, Scripta Materi. 58 (2008) 469-482.

DOI: 10.1016/j.scriptamat.2007.10.037

Google Scholar

[16] T. Masuda, K. Fujimitsu, Y. Takizawa, Z. Horita, High-Pressure Sliding Using Rod Samples for Grain Refinement and Superplasticity in Al and Mg Alloys, Letters on Materials, (2015) in press.

DOI: 10.22226/2410-3535-2015-3-258-263

Google Scholar

[17] K. Edalati, Z. Horita, Continuous High-Pressure Torsion, J. Mater. Sci. 45 (2010) 4578-4582.

DOI: 10.1007/s10853-010-4381-z

Google Scholar

[18] K. Edalati, Z. Horita, Continuous High-Pressure Torsion Using Wires, J. Mater. Sci. 47 (2012) 473-478.

DOI: 10.1007/s10853-011-5822-z

Google Scholar

[19] G. Sakai, K. Nakamura, Z. Horita, T.G. Langdon, Developing high-pressure torsion for use with bulk samples, Mater. Sci. Eng. A406 (2005) 268-273.

DOI: 10.1016/j.msea.2005.06.049

Google Scholar

[20] A. Hohenwarter, Incremental high pressure torsion as a novel severe plastic deformation process: Processing features and application to copper, Mater. Sci. Eng. A626 (2015) 80-85.

DOI: 10.1016/j.msea.2014.12.041

Google Scholar

[21] L.S. Toth, M. Arzaghi, J.J. Fundenberger, B. Beausir, O. Bouaziz, R. Arruffat-Massion, Severe plastic deformation of metals by high-pressure tube twisting, Scr. Mater. 60 (2009) 175-177.

DOI: 10.1016/j.scriptamat.2008.09.029

Google Scholar

[22] J. T. Wang, Z. Li, J. Wang, T.G. Langdon, Principles of severe plastic deformation using tube high-pressure shearing, Scr. Mater. 67 (2012) 810-813.

DOI: 10.1016/j.scriptamat.2012.07.028

Google Scholar

[23] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Plastic deformation of alloys with submicron- grained structure, Mater. Sci. Eng. A137 (1991) 35-40.

DOI: 10.1016/0921-5093(91)90316-f

Google Scholar

[24] R.Z. Valiev, C. Song, S.X. McFadden, A.K. Mukherjee, R.S. Mishra, TEM/HREM observations of nanostructured superplastic Ni3Al, Philos. Mag. A81 (2001) 25–36.

DOI: 10.1080/01418610108216615

Google Scholar

[25] S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T.G. Langdon, Influence of Scandium on Superplastic Ductilities in an Al-Mg-Sc Alloy, J. Mater. Res. 15 (2000) 2571-2576.

DOI: 10.1557/jmr.2000.0367

Google Scholar

[26] G. Sakai, Z. Horita and T.G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A393 (2005) 344-351.

DOI: 10.1016/j.msea.2004.11.007

Google Scholar

[27] Y. Harai, K. Edalati, Z. Horita and T. G. Langdon, Using ring samples to evaluate the processing characteristics in high-pressure torsion, Acta Mater. 57 (2009) 1147-1153.

DOI: 10.1016/j.actamat.2008.10.046

Google Scholar

[28] Z. Horita and T. G. Langdon, Achieving Exceptional Superplasticity in a Bulk Aluminum Alloy Processed by High-Pressure Torsion, Scripta Mater., 58 (2008) 1029-1032.

DOI: 10.1016/j.scriptamat.2008.01.043

Google Scholar

[29] M. Kai, Z. Horita, and T G. Langdon, Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion, Mater. Sci. Eng. A488 (2008) 117–124.

DOI: 10.1016/j.msea.2007.12.046

Google Scholar

[30] A. Alhamidi and Z. Horita, Grain refinement and high strain rate superplasticity in aluminum 2024 alloy processed by high-pressure torsion, Mater. Sci. Eng. A622 (2015) 139-145.

DOI: 10.1016/j.msea.2014.11.009

Google Scholar

[31] M. Ashida, P. Chen, H. Doi, Y. Tsutsumi, T. Hanawa, Z. Horita, Superplasticity in Ti-6Al-7Nb alloy processed by high-pressure torsion, Mater. Sci. Eng. A640 (2015) 449-453.

DOI: 10.1016/j.msea.2015.06.020

Google Scholar

[32] H. Matsunoshita, K. Edalati, M. Furui, Z. Horita, Ultrafine-Grained magnesium-lithium alloy processed by high-pressure torsion: Low-temperature superplasticity and potential for hydroforming, Mater. Sci. Eng. A640 (2015) 443-448.

DOI: 10.1016/j.msea.2015.05.103

Google Scholar

[33] S. Lee, Z. Horita, Superplasticity of ultrafine-grained 7075 alloy processed by high-pressure torsion, Mater. Sci. Forum 794-796 (2014) 807-810.

DOI: 10.4028/www.scientific.net/msf.794-796.807

Google Scholar

[34] K. Tazoe, S. Honda and Z. Horita, Application of High-Pressure Sliding for Grain Refinement of Al and Mg Alloys, Mater. Sci. Forum 667-669 (2011) 91-96.

DOI: 10.4028/www.scientific.net/msf.667-669.91

Google Scholar

[35] T. Masuda, K. Fujimitsu, Y. Takizawa, Z. Horita, Achieving Superplasticity through Grain Refinement of A2024 Alloy Using High-Pressure Sliding, J. Japan Inst. Light Metals 65 (2015) in press.

DOI: 10.2464/jilm.65.319

Google Scholar