On Regularities of Grain Refinement through Large Strain Deformation

Article Preview

Abstract:

The recent studies on grain refinement in austenitic stainless steels during large strain deformations are critically reviewed. The paper is focused on the mechanism of structural changes that is responsible for the development of submicrocrystalline structures that can be interpreted as continuous dynamic recrystallization developing under conditions of warm working. The final grain size that is attainable by large strain warm working can be expressed by a power law function of temperature compensated strain rate with an exponent of about -0.15. The development of submicrocrystalline structures is assisted by the deformation microbanding and dynamic recovery, which are characterized by opposite temperature dependencies. The grain refinement kinetics, therefore, are characterized by a weak temperature dependence for a wide range of warm working conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

314-319

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[2] O.A. Kaibyshev, Superplasticity of alloys, intermetallics and ceramics, Springer, Berlin, (1992).

Google Scholar

[3] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130-207.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[4] B. Derby, The dependence of grain size on stress during dynamic recrystallization, Acta Metall. Mater. 39 (1991) 955–962.

DOI: 10.1016/0956-7151(91)90295-c

Google Scholar

[5] M. Tikhonova, R. Kaibyshev, X. Fang, W. Wang, A. Belyakov, Grain boundary assembles developed in an austenitic stainless steel during large strain warm working, Mater. Charact. 70 (2012) 14-20.

DOI: 10.1016/j.matchar.2012.04.018

Google Scholar

[6] M. Tikhonova, A. Belyakov, R. Kaibyshev, Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging, Mater. Sci. Eng. A 564 (2013) 413-422.

DOI: 10.1016/j.msea.2012.11.088

Google Scholar

[7] Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273 K, Acta Mater. 82 (2015) 244-254.

DOI: 10.1016/j.actamat.2014.09.023

Google Scholar

[8] J.K. Solberg, H.J. McQueen, N. Ryum, E. Nes, Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I, Philos. Mag. A 60 (1989) 447–471.

DOI: 10.1080/01418618908213872

Google Scholar

[9] N. Tsuji, Y. Matsubara, Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel. Scripta Mater. 37 (1997) 477–484.

DOI: 10.1016/s1359-6462(97)00123-1

Google Scholar

[10] A. Belyakov, K. Tsuzaki, Y. Kimura, Y. Kimura, Y. Mishima, Comparative study on microstructure evolution upon unidirectional and multidirectional cold working in an Fe – 15%Cr ferritic alloy, Mater. Sci. Eng. A 456 (2007) 323-331.

DOI: 10.1016/j.msea.2006.12.063

Google Scholar

[11] A. Belyakov, H. Miura, T. Sakai, Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel, Mater. Sci. Eng, A 255 (1998) 139-147.

DOI: 10.1016/s0921-5093(98)00784-9

Google Scholar

[12] R. Sandstrom, R. Lagneborg, A controlling factor for dynamic recrystallization, Scripta Metall. 9 (1975) 59-66.

Google Scholar

[13] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed., Elsevier, UK, (2004).

Google Scholar

[14] Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, R. Kaibyshev, Structural strengthening of an austenitic stainless steel subjected to warm-to-hot working, Mater. Charact. 62 (2011) 432-437.

DOI: 10.1016/j.matchar.2011.02.005

Google Scholar

[15] H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Oxford, (1982).

Google Scholar

[16] S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Mater. 51 (2003) 2685–2699.

DOI: 10.1016/s1359-6454(03)00078-8

Google Scholar

[17] J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009) 2748–2756.

DOI: 10.1016/j.actamat.2009.02.033

Google Scholar

[18] V.V. Rybin, A.A. Zisman, N.Y. Zolotorevsky, Junction disclinations in plastically deformed crystals, Acta Mater. 41 (1993) 2211–2217.

DOI: 10.1016/0956-7151(93)90390-e

Google Scholar

[19] O. Bouaziz, Y. Estrin, Y. Brechet, J.D. Embury, Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials, Scr. Mater. 63 (2010) 477–479.

DOI: 10.1016/j.scriptamat.2010.05.006

Google Scholar