[1]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[2]
O.A. Kaibyshev, Superplasticity of alloys, intermetallics and ceramics, Springer, Berlin, (1992).
Google Scholar
[3]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[4]
B. Derby, The dependence of grain size on stress during dynamic recrystallization, Acta Metall. Mater. 39 (1991) 955–962.
DOI: 10.1016/0956-7151(91)90295-c
Google Scholar
[5]
M. Tikhonova, R. Kaibyshev, X. Fang, W. Wang, A. Belyakov, Grain boundary assembles developed in an austenitic stainless steel during large strain warm working, Mater. Charact. 70 (2012) 14-20.
DOI: 10.1016/j.matchar.2012.04.018
Google Scholar
[6]
M. Tikhonova, A. Belyakov, R. Kaibyshev, Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging, Mater. Sci. Eng. A 564 (2013) 413-422.
DOI: 10.1016/j.msea.2012.11.088
Google Scholar
[7]
Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273 K, Acta Mater. 82 (2015) 244-254.
DOI: 10.1016/j.actamat.2014.09.023
Google Scholar
[8]
J.K. Solberg, H.J. McQueen, N. Ryum, E. Nes, Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I, Philos. Mag. A 60 (1989) 447–471.
DOI: 10.1080/01418618908213872
Google Scholar
[9]
N. Tsuji, Y. Matsubara, Y. Saito, Dynamic recrystallization of ferrite in interstitial free steel. Scripta Mater. 37 (1997) 477–484.
DOI: 10.1016/s1359-6462(97)00123-1
Google Scholar
[10]
A. Belyakov, K. Tsuzaki, Y. Kimura, Y. Kimura, Y. Mishima, Comparative study on microstructure evolution upon unidirectional and multidirectional cold working in an Fe – 15%Cr ferritic alloy, Mater. Sci. Eng. A 456 (2007) 323-331.
DOI: 10.1016/j.msea.2006.12.063
Google Scholar
[11]
A. Belyakov, H. Miura, T. Sakai, Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel, Mater. Sci. Eng, A 255 (1998) 139-147.
DOI: 10.1016/s0921-5093(98)00784-9
Google Scholar
[12]
R. Sandstrom, R. Lagneborg, A controlling factor for dynamic recrystallization, Scripta Metall. 9 (1975) 59-66.
Google Scholar
[13]
F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, 2nd ed., Elsevier, UK, (2004).
Google Scholar
[14]
Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, R. Kaibyshev, Structural strengthening of an austenitic stainless steel subjected to warm-to-hot working, Mater. Charact. 62 (2011) 432-437.
DOI: 10.1016/j.matchar.2011.02.005
Google Scholar
[15]
H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Oxford, (1982).
Google Scholar
[16]
S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Mater. 51 (2003) 2685–2699.
DOI: 10.1016/s1359-6454(03)00078-8
Google Scholar
[17]
J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The Avrami kinetics of dynamic recrystallization, Acta Mater. 57 (2009) 2748–2756.
DOI: 10.1016/j.actamat.2009.02.033
Google Scholar
[18]
V.V. Rybin, A.A. Zisman, N.Y. Zolotorevsky, Junction disclinations in plastically deformed crystals, Acta Mater. 41 (1993) 2211–2217.
DOI: 10.1016/0956-7151(93)90390-e
Google Scholar
[19]
O. Bouaziz, Y. Estrin, Y. Brechet, J.D. Embury, Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials, Scr. Mater. 63 (2010) 477–479.
DOI: 10.1016/j.scriptamat.2010.05.006
Google Scholar