Nanostructurization of Magnesium Alloy via Friction Stir Lap Processing

Article Preview

Abstract:

Friction stir processing (FSP) in a lap configuration of a metal sheet and an alloy plate has been examined to produce surface alloy layer with nanostructures. The 1-pass friction stir lap processing (FSLP) over 0.5 mm-thick Cu sheet on an AZ91 substrate produced multilayer structure with nanograins and/or nanoprecipitates in each layer, but the structure distributed only partially in the stir zone (SZ). Through the 3-pass FSLP along the same line, the multilayer structure has disappeared and the fine structure with precipitates in size ranging from several 100 nanometer to 3 micrometer has yielded among the entire SZ. 2-dimensional microhardness mapping have shown that the standard deviation of microhardness values in the SZ has decreased by half from 1-pass to 3 pass FSLP. Homogeneous microstructure involving nanostructures has been successfully produced via multi-pass FSLP.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

332-337

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. T. Zhu, X. Liao, Nanostructured metals: retaining ductility, Nature Mater. 3 (2004) 351-352.

Google Scholar

[2] A. Mashreghi, L. Ghalandari, M. Reihanian, M. M. Moshksar, Processing, strength and ductility of bulk nanostructured metals produced by sever plastic deformation: an overview, Mater. Sci. Forum, 633-634 (2010) 131-150.

DOI: 10.4028/www.scientific.net/msf.633-634.131

Google Scholar

[3] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.

Google Scholar

[4] C. I. Chang, X. H. Du and J. C. Huang, Processing nano-grained microstructure in Mg-Al-Zn alloy by two-pass friction stir processing, Scripta Mater. 59 (2008) 356-359.

DOI: 10.1016/j.scriptamat.2008.04.003

Google Scholar

[5] A. Shafiei-Zarghani, S. F. Kashani-Bozorg and A. Zarei-Hanzaki, Microstructure and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Mater. Sci. Eng. A500 (2009) 84-91.

DOI: 10.1016/j.msea.2008.09.064

Google Scholar

[6] K. Inada, H. Fujii, Y. S. Ji, Y. F. Sun, Y. Morisada, Effect of gap on FSW joint formation and development of friction powder processing, Sci. Technol. Weld. Join. 15 (2010) 131-136.

DOI: 10.1179/136217109x12568132624244

Google Scholar

[7] C. H. Chuang, J. C. Huang, P. J. Hsieh, Using friction stir processing to fabricate MgAlZn intermetallic alloys, Scripta Mater. 53 (2005) 1455-1460.

DOI: 10.1016/j.scriptamat.2005.08.019

Google Scholar

[8] Y. Kimoto, T. Nagaoka, H. Watanabe, M. Fukusumi, Y. Morisada, H. Fujii, Mg-Cu alloy layer formation via friction stir processing, Proc. Int. Symp. Visual. Join. Weld. Sci. Adv. Meas. Simul. (Visual-JW) 2014, 319-320.

DOI: 10.4028/www.scientific.net/msf.838-839.332

Google Scholar

[9] Y. Tamura, J. Yagi, T. Haitani, T. Motegi, N. Kono, H. Tamehiro, H. Saito, Observation of manganese-bearing particles in molten AZ91 magnesium alloy by rapid solidification, Mater. Trans. 44 (2003) 552-557.

DOI: 10.2320/matertrans.44.552

Google Scholar

[10] C. W. Tan, Z. G. Jiang, L. Q. Li, Y. B. Chen, X. Y. Chen, Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding, Mater. Des. 51 (2013) 466-473.

DOI: 10.1016/j.matdes.2013.04.056

Google Scholar

[11] Metals Handbook, 8th Ed., Vol 8, American Society for Metals, Metals Park, Ohio, (1973).

Google Scholar