[1]
T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.
DOI: 10.1007/s10853-009-3780-5
Google Scholar
[2]
O.A. Kaibyshev, Superplasticity of Alloys Intermetallides and Ceramics, first ed., Springer-Verlag, Berlin, (1992).
Google Scholar
[3]
M. Kawasaki, T.G. Langdon, Principles of superplasticity in ultrafine-grained materials, J. Mater. Sci. 42 (2007) 1782–1796.
DOI: 10.1007/s10853-006-0954-2
Google Scholar
[4]
T. Tanaka, K. Makii, H. Ueda, A. Kushibe, M. Kohzu, K. Higashi, Study on practical application of a new seismic damper using a Zn–Al alloy with a nanocrystalline microstructure, Int. J. Mech. Sci. 45 (2003) 1599–1612.
DOI: 10.1016/j.ijmecsci.2003.12.001
Google Scholar
[5]
S.H. Xia, J. Wang, J.T. Wang, J.Q. Liu, Improvement of room-temperature superplasticity in Zn–22 wt. %Al alloy, Mater. Sci. Eng. A 493 (2008) 111-115.
DOI: 10.1016/j.msea.2007.07.100
Google Scholar
[6]
T. Hirata, T. Tanaka, S.W. Chung, Y. Takigawa, K. Higashi, Relationship between deformation behavior and microstructural evolution of friction stir processed Zn–22wt. % Al alloy, Scr. Mater. 56 (2007) 477-480.
DOI: 10.1016/j.scriptamat.2006.11.022
Google Scholar
[7]
T. Tanaka, H. Watanabe, K. Higashi, Microstructure in Zn–Al Alloys after Equal-Channel-Angular Extrusion, Mater. Trans. 44 (2003) 1891-1894.
DOI: 10.2320/matertrans.44.1891
Google Scholar
[8]
T. Tanaka, K. Higashi, Superplasticity at Room Temperature in Zn-22Al Alloy Processed by Equal-Channel-Angular Extrusion, Mater. Trans. 45, (2004) 1261-1265.
DOI: 10.2320/matertrans.45.1261
Google Scholar
[9]
P. Kumar, C. Xu, T.G. Langdon, Mechanical characteristics of a Zn–22% Al alloy processed to very high strains by ECAP, Mater. Sci. Eng. A 429 (2006) 324-328.
DOI: 10.1016/j.msea.2006.05.044
Google Scholar
[10]
Y. Huang, T.G. Langdon, Characterization of deformation processes in a Zn-22% Al alloy using atomic force microscopy, J. Mater. Sci. 37 (2002) 4993-4998.
Google Scholar
[11]
C.F. Yang, J.H. Pan, M.C. Chuang, Achieving high strain rate superplasticity via severe plastic deformation processing, J. Mater. Sci. 43 (2008) 6260-6266.
DOI: 10.1007/s10853-008-2909-2
Google Scholar
[12]
M. Demirtas, G. Purcek, H. Yanar, Z.J. Zhang, Z.F. Zhang, Improvement of high strain rate and room temperature superplasticity in Zn–22Al alloy by two-step equal-channel angular pressing, Mater. Sci. Eng. A 620 (2014) 233-240.
DOI: 10.1016/j.msea.2014.09.114
Google Scholar
[13]
T. Tanaka, K. Makii, A. Kushibe, M. Kohzu, K. Higashi, Capability of superplastic forming in the seismic device using Zn–22Al eutectoid alloy, Scr. Mater. 49 (2003) 361-366.
DOI: 10.1016/s1359-6462(03)00328-2
Google Scholar
[14]
T. Tanaka, S.W. Chung, L.F. Chaing, K. Makii, A. Kushibe, M. Kohzu, K. Higashi, Post-characteristics of formed Zn-22 mass%Al alloy to seismic damper for general residence, Mater. Trans. 45 (2004) 2542-2546.
DOI: 10.2320/matertrans.45.2542
Google Scholar
[15]
T. Tanaka, S.W. Chung, L.F. Chaing, K. Makii, A. Kushibe, M. Kohzu, K. Higashi, On applying superplastic Zn-22 wt. %Al alloy with nanocrystalline grains to general residential seismic dampers, Mater. Sci. Eng. A 410-411 (2005) 109-113.
DOI: 10.1016/j.msea.2005.08.115
Google Scholar