[1]
M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progr. Mater. Sci. 51 (2006) 427–556.
Google Scholar
[2]
O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics, Springer-Verlag, Berlin, (1992).
Google Scholar
[3]
G.A. Salishchev, E.A. Kudrjavtsev, S.V. Zherebtsov, S.L. Semiatin, Mater. Sci. Forum, 735 (2013) 253-257.
Google Scholar
[4]
D.A. Hughes, N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater. 48 (2000) 2985-3004.
DOI: 10.1016/s1359-6454(00)00082-3
Google Scholar
[5]
F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, (2004).
Google Scholar
[6]
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progr. Mater. Sci. 60 (2014) 130–207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[7]
A. Belyakov, S. Zherebtsov, G. Salishchev, Three-stage relationship between flow stress and dynamic grain size in titanium in wide temperature interval, Mater. Sci. Eng. A628 (2015) 104-109.
DOI: 10.1016/j.msea.2015.01.036
Google Scholar
[8]
S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev, S.L. Semiatin, Formation of nanostructures in commercial-purity titanium via cryo-rolling, Acta Mater. 61 (2013) 1167-1178.
DOI: 10.1016/j.actamat.2012.10.026
Google Scholar
[9]
G. Salishchev, S. Mironov, S. Zherebtsov, A. Belyakov, Changes in misorientations of grain boundaries in titanium during deformation, Mater. Charact. 61 (2010) 732-739.
DOI: 10.1016/j.matchar.2010.04.005
Google Scholar
[10]
S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S. Yu. Mironov, S.L. Semiatin, Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing, Scripta Mater. 51 (2004).
DOI: 10.1016/j.scriptamat.2004.08.018
Google Scholar
[11]
S. Zherebtsov, M. Murzinova, G. Salishchev, S.L. Semiatin, Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing, Acta Mater. 59 (2011) 4138-4150.
DOI: 10.1016/j.actamat.2011.03.037
Google Scholar
[12]
S. Zherebtsov, G. Salishchev, S.L. Semiatin, Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation, Phil. Mag. Letters 90 (2010) 903-914.
DOI: 10.1080/09500839.2010.521526
Google Scholar
[13]
M. Cabibbo, S. Zherebtsov, S. Mironov, G. Salishchev, Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti-6Al-4V alloy compressed at 800°C, J. Mater. Sci. 48 (2013) 1100-1110.
DOI: 10.1007/s10853-012-6842-z
Google Scholar
[14]
S.L. Semiatin, D.U. Furrer, ASM Handbook, vol. 22. Fundamentals of Modeling for Metals Processing. Materials Park, OH: ASM International; (2009).
Google Scholar
[15]
S. Zherebtsov, W. Lojkowski, A. Mazur, G. Salishchev, Structure and properties of hydrostatically extruded commercially pure titanium, Mater. Sci. Eng. A527 (2010) 5596-5603.
DOI: 10.1016/j.msea.2010.05.043
Google Scholar
[16]
S. Zherebtsov, E. Kudryavtsev, S. Kostjuchenko, S. Malysheva, G. Salishchev, Strength and ductility-related properties of ultrafine grained two-phase titanium alloy produced by warm multiaxial forging, Mater. Sci Eng. 536A (2012) 190-196.
DOI: 10.1016/j.msea.2011.12.102
Google Scholar