Two-Dimensional Molecular Dynamics Simulation for Studying of Grain Refinement

Article Preview

Abstract:

The molecular dynamics simulation method in two-dimensional case is presented for the simulation of grain refinement and can be applied to the investigation of grain boundary sliding and defects movement under severe plastic deformation. Nanopolycrystalline system is shown as the example of the application of the method proposed. Atomistic details of structure formation and grain growth (refinement) are shown by the example of change of loading scheme. It was shown that elongated grains which appear under plastic deformation can grow up even larger or be destroyed, depending on the direction of the applied maximal shear stresses.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

361-366

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Nazarov, R.R. Mulyukov, in: Handbook of Nanoscience, Engineering and Technology, Ed. Goddard W., Brenner D., Lyshevski S., Iafrate G., CRC Press, 2003, pp.1-41.

Google Scholar

[2] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Progr. Mat. Sci. 53 (2008) 893–979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[3] R.R. Mulyukov, Nanotechnologies in Russia. 2 (7-8) (2007) 38-53.

Google Scholar

[4] A. Parimi, P. Robi, S. Dwivedy, Severe plastic deformation of copper and Al–Cu alloy using multiple channel-die compression, Mater. Des. 32 (2011) 1948–(1956).

DOI: 10.1016/j.matdes.2010.11.074

Google Scholar

[5] M. Nili Ahmadabadi, et al., Role of severe plastic deformation on the formation of nanograins and nano-sized precipitates in Fe–Ni–Mn steel, Mater. Des. 32 (2011) 3526–3531.

DOI: 10.1016/j.matdes.2011.02.018

Google Scholar

[6] H. Zendehdel, A. Hassani, Influence of twist extrusion process on microstructure and mechanical properties of 6063 aluminum alloy, Mater. Des. 37 (2012) 13–18.

DOI: 10.1016/j.matdes.2011.12.009

Google Scholar

[7] V. Segal, Equal channel angular extrusion: from macromechanics to sStructure formation, Mater. Sci. Eng. A 338 (2002) 331–344.

Google Scholar

[8] F. Rahimi, A.R. Eivani, A new severe plastic deformation technique based on pure shear, Mat. Sci. Eng. A 626 (2015) 423–431.

DOI: 10.1016/j.msea.2014.12.024

Google Scholar

[9] H. Liu, W. Pantleon, L. Mishnaevsky Jr., Non-equilibrium grain boundaries in titanium nanostructured by severe plastic deformation: Computational study of sources of material strengthening, Comp. Mater. Sci. 83 (2014) 318–330.

DOI: 10.1016/j.commatsci.2013.11.009

Google Scholar

[10] J. -J. Park, Finite-element analysis of severe plastic deformation in differential-speed rolling, Comp. Mater. Sci. 100 (2015) 61–66.

DOI: 10.1016/j.commatsci.2014.09.010

Google Scholar

[11] H. Parvin, M. Kazeminezhad, Development a dislocation density based model considering the effect of stacking fault energy: Severe plastic deformation, Comp. Mater. Sci. 95 (2014) 250–255.

DOI: 10.1016/j.commatsci.2014.07.027

Google Scholar

[12] Yu.A. Baimova, S.V. Dmitriev, A.A. Nazarov, Simulation of the effect of strengthening-phase particles on the plastic deformation of a two dimensional polycrystal, The Physics of Metals and Metallography. 113 (2012) 302-311.

DOI: 10.1134/s0031918x12030027

Google Scholar

[13] V.V. Astanin, Yu.A. Baimova, S.V. Dmitriev, A.I. Pshenichnyuk, Kinetics of overcoming obstructions in cooperative grain-boundary sliding in two-dimensional crystal, The Physics of Metals and Metallography. 113 (2012) 907-913.

DOI: 10.1134/s0031918x12090049

Google Scholar

[14] J.A. Baimova, S.V. Dmitriev, High-energy mesoscale strips observed in two-dimensional atomistic modeling of plastic deformation of nano-polycrystal, Comp. Mater. Sci. 50 (2011) 1414-1417.

DOI: 10.1016/j.commatsci.2010.11.024

Google Scholar

[15] A.A. Nazarova, S.V. Dmitriev, Yu.A. Baimova, R.R. Mulyukov, A.A. Nazarov, Computer simulation of the effect of ultrasound and annealing on the structure of a two-dimensional severely deformed nanocrystalline material, The Physics of Metals and Metallography. 111 (2011).

DOI: 10.1134/s0031918x11040090

Google Scholar

[16] S.V. Dmitriev, T. Kitamura, J. Li, Y. Umeno, K. Yashiro, N. Yoshikawa, Near–surface lattice instability in 2D fiber and half–space, Acta Mater. 53 (2005) 1215.

DOI: 10.1016/j.actamat.2004.11.015

Google Scholar

[17] S.V. Dmitriev, J. Li, N. Yoshikawa, Y. Shibutani, Theoretical strength of 2D hexagonal crystals: application to bubble raft indentation, Phil. Mag. 85 (2005) 2177.

DOI: 10.1080/14786430412331331862

Google Scholar

[18] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182.

DOI: 10.1063/1.328693

Google Scholar

[19] S. Nose, An improved symplectic integrator for Nose-Poincare thermostat, J. Phys. Soc. Jpn. 70 (2001) 75-77.

Google Scholar

[20] P.R. Bhowal, N.M. Bhathena, Metall. Mater. Trans. A 22 (1991) (1999).

Google Scholar