[1]
P.A. Khaimovich, Deformation of metals at cryogenic temperature in the conditions of uniform compression, Prob. Atomic Sci. Tech. 4 (2006) 28-35.
Google Scholar
[2]
Y.S. Li, N.R. Tao, K. Lu, Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures, Acta Mater. 56 (2008) 230-241.
DOI: 10.1016/j.actamat.2007.09.020
Google Scholar
[3]
S.K. Panigrahi, R. Jayaganthan, Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy, Mat. Sci. Eng. A 492 (2008) 300-305.
DOI: 10.1016/j.msea.2008.03.029
Google Scholar
[4]
R.A. Andrievski, A.M. Glezer, Strength of nanostructures, Phys. Usp. 179 (2009) 337-358.
Google Scholar
[5]
S.V. Krymskiy, E.V. Avtokratova, O. Sh. Sitdikov, M.V. Markushev, Hardness of cryorolled and artificially aged D16 aluminum alloy, Lett. Mat. 1 (2012) 45-48.
DOI: 10.22226/2410-3535-2012-1-45-48
Google Scholar
[6]
T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, Microstructural response of pure copper to cryogenic rolling, Acta Mater. 58 (2010) 5262-5273.
DOI: 10.1016/j.actamat.2010.05.056
Google Scholar
[7]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61 (2013) 782–817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[8]
R.Z. Valiev, I.V. Aleksandrov, Bulk nanostructured materials: production, structure, and properties, second ed., Akademkniga, Moscow, (2007).
Google Scholar
[9]
S.V. Krymskiy, E.V. Avtokratova, M.V. Markushev, M. Yu. Murashkin, O. Sh. Sitdikov, Structure and hardness of cryorolled and heat-treated 2xxx aluminum alloy, Mat. Sci. Forum 667-669 (2011) 925-930.
DOI: 10.4028/www.scientific.net/msf.667-669.925
Google Scholar
[10]
S.V. Krymskiy, O. Sh. Sitdikov, E.V. Avtokratova, M. Yu. Murashkin, M.V. Markushev, Strength of cryorolled commercial heat hardenable aluminum alloy with multilevel nanostructure, Rev. Adv. Mater. Sci. 31 (2012) 145-150.
DOI: 10.4028/www.scientific.net/msf.667-669.925
Google Scholar
[11]
C. Kobayashi, T. Sakai, A. Belyakov, H. Miura, Ultrafine grain development in copper during multidirectional forging at 195 K, Phil. Mag. Lett. 87 (2007) 751-766.
DOI: 10.1080/09500830701566016
Google Scholar
[12]
S. Gourdet, F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Mat. Sci. Eng. A. 283 (2000) 274-288.
DOI: 10.1016/s0921-5093(00)00733-4
Google Scholar
[13]
J. Gubicza, N.Q. Chin, Gy. Krallics, I. Schiller, T. Ungar, Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation, Curr. App. Phys. 6 (2006) 194-199.
DOI: 10.1016/j.cap.2005.07.039
Google Scholar
[14]
J.K. Mackenzie, Second Paper on Statistics Associated with the Random Disorientation of Cubes, Biometrika. 45 (1958) 229–240.
DOI: 10.1093/biomet/45.1-2.229
Google Scholar
[15]
H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: I – deformed state, Acta Mater. 52 (2004) 3239-3250.
DOI: 10.1016/j.actamat.2004.03.030
Google Scholar
[16]
F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena: second ed., Elsevier (2004).
Google Scholar
[17]
T. Sakai, J.J. Jonas, Dynamic recrystallization: mechanical and microstructural considerations, Acta Metall. 32 (1984) 189-209.
DOI: 10.1016/0001-6160(84)90049-x
Google Scholar
[18]
O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki, Ultra fine-grain structure formation in an Al-Mg-Sc alloy during warm ECAP, Met. Mat. Trans. A. 44 (2013) 1087-1100.
DOI: 10.1007/s11661-012-1438-4
Google Scholar
[19]
J. K. Kim, H. G. Jeong, S. I. Hong, Y. S. Kim and W. J. Kim, Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing, Scr. Mater. 45 (2001) 901–907.
DOI: 10.1016/s1359-6462(01)01109-5
Google Scholar