Nanostructuring of 2xxx Aluminum Alloy under Cryorolling to High Strains

Article Preview

Abstract:

The structure transformations in the D16 (2024) aluminum alloy caused by isothermal rolling with effective strain up to e ~3.5 at a temperature of liquid nitrogen were investigated. It is shown that under straining to e ~2.0 the dislocation structure containing cells of the nanometric size is formed. At higher strains the dynamic recovery and continuous recrystallization result in the development of a mixed nano(sub) grain structure, which after e ~3.5 is characterized by the size and volume fraction of grains ~ 150 nm and 40-45%, respectively. Nature of the alloy structure transformations is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

367-372

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.A. Khaimovich, Deformation of metals at cryogenic temperature in the conditions of uniform compression, Prob. Atomic Sci. Tech. 4 (2006) 28-35.

Google Scholar

[2] Y.S. Li, N.R. Tao, K. Lu, Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures, Acta Mater. 56 (2008) 230-241.

DOI: 10.1016/j.actamat.2007.09.020

Google Scholar

[3] S.K. Panigrahi, R. Jayaganthan, Effect of rolling temperature on microstructure and mechanical properties of 6063 Al alloy, Mat. Sci. Eng. A 492 (2008) 300-305.

DOI: 10.1016/j.msea.2008.03.029

Google Scholar

[4] R.A. Andrievski, A.M. Glezer, Strength of nanostructures, Phys. Usp. 179 (2009) 337-358.

Google Scholar

[5] S.V. Krymskiy, E.V. Avtokratova, O. Sh. Sitdikov, M.V. Markushev, Hardness of cryorolled and artificially aged D16 aluminum alloy, Lett. Mat. 1 (2012) 45-48.

DOI: 10.22226/2410-3535-2012-1-45-48

Google Scholar

[6] T. Konkova, S. Mironov, A. Korznikov, S.L. Semiatin, Microstructural response of pure copper to cryogenic rolling, Acta Mater. 58 (2010) 5262-5273.

DOI: 10.1016/j.actamat.2010.05.056

Google Scholar

[7] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[8] R.Z. Valiev, I.V. Aleksandrov, Bulk nanostructured materials: production, structure, and properties, second ed., Akademkniga, Moscow, (2007).

Google Scholar

[9] S.V. Krymskiy, E.V. Avtokratova, M.V. Markushev, M. Yu. Murashkin, O. Sh. Sitdikov, Structure and hardness of cryorolled and heat-treated 2xxx aluminum alloy, Mat. Sci. Forum 667-669 (2011) 925-930.

DOI: 10.4028/www.scientific.net/msf.667-669.925

Google Scholar

[10] S.V. Krymskiy, O. Sh. Sitdikov, E.V. Avtokratova, M. Yu. Murashkin, M.V. Markushev, Strength of cryorolled commercial heat hardenable aluminum alloy with multilevel nanostructure, Rev. Adv. Mater. Sci. 31 (2012) 145-150.

DOI: 10.4028/www.scientific.net/msf.667-669.925

Google Scholar

[11] C. Kobayashi, T. Sakai, A. Belyakov, H. Miura, Ultrafine grain development in copper during multidirectional forging at 195 K, Phil. Mag. Lett. 87 (2007) 751-766.

DOI: 10.1080/09500830701566016

Google Scholar

[12] S. Gourdet, F. Montheillet, An experimental study of the recrystallization mechanism during hot deformation of aluminium, Mat. Sci. Eng. A. 283 (2000) 274-288.

DOI: 10.1016/s0921-5093(00)00733-4

Google Scholar

[13] J. Gubicza, N.Q. Chin, Gy. Krallics, I. Schiller, T. Ungar, Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation, Curr. App. Phys. 6 (2006) 194-199.

DOI: 10.1016/j.cap.2005.07.039

Google Scholar

[14] J.K. Mackenzie, Second Paper on Statistics Associated with the Random Disorientation of Cubes, Biometrika. 45 (1958) 229–240.

DOI: 10.1093/biomet/45.1-2.229

Google Scholar

[15] H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some aluminium alloys: I – deformed state, Acta Mater. 52 (2004) 3239-3250.

DOI: 10.1016/j.actamat.2004.03.030

Google Scholar

[16] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena: second ed., Elsevier (2004).

Google Scholar

[17] T. Sakai, J.J. Jonas, Dynamic recrystallization: mechanical and microstructural considerations, Acta Metall. 32 (1984) 189-209.

DOI: 10.1016/0001-6160(84)90049-x

Google Scholar

[18] O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki, Ultra fine-grain structure formation in an Al-Mg-Sc alloy during warm ECAP, Met. Mat. Trans. A. 44 (2013) 1087-1100.

DOI: 10.1007/s11661-012-1438-4

Google Scholar

[19] J. K. Kim, H. G. Jeong, S. I. Hong, Y. S. Kim and W. J. Kim, Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing, Scr. Mater. 45 (2001) 901–907.

DOI: 10.1016/s1359-6462(01)01109-5

Google Scholar