[1]
R. Kennedy, Allvac® 718PlusTM, superalloy for the next forty years, Superalloys 718 & Derivatives (2005) 1-14.
DOI: 10.7449/2005/superalloys_2005_1_14
Google Scholar
[2]
M.W. Mahoney, Superplastic properties of Alloy 718, Superalloy 718 - Metallurgy and Applications (1989) 391-405.
DOI: 10.7449/1989/superalloys_1989_391_405
Google Scholar
[3]
G.A. Salishchev, O.R. Valiakhmetov, V.A. Valitov, Sh. Kh. Mukhtarov, Submicrocrystalline and nanocrystalline structure formation in materials and search for outstanding superplastic properties, Mater. Sci. Forum 170-172 (1994) 121-130.
DOI: 10.4028/www.scientific.net/msf.170-172.121
Google Scholar
[4]
Sh. Mukhtarov, N. Dudova, V. Valitov, Processing and mechanical properties of bulk nanostructured nickel-based alloys, Mater. Sci. Eng. A 503 (2009) 181-184.
DOI: 10.1016/j.msea.2008.02.058
Google Scholar
[5]
Information on http: /www. atimetals. com/products/718plus-alloy/Pages/Specifications. aspx.
Google Scholar
[6]
Sh. Mukhtarov, V. Valitov, M.F.X. Gigliotti, PR Subramanian, J.S. Marte, N. Dudova, Influence of severe thermomechanical treatment on formation of nanocrystalline structure in Ni 718 and Ni 718Plus alloys and their mechanical properties, Mater. Sci. Forum 584-586 (2008).
DOI: 10.4028/www.scientific.net/msf.584-586.458
Google Scholar
[7]
O.A. Kaibyshev, F.Z. Utyashev, Superplasticity: Microstructural Refinement and Superplastic Roll Forming, Futurepast, Arlington, (2005).
Google Scholar
[8]
N.C. Eurich, P.D. Bristowe, Thermodynamic stability and electronic structure of h-Ni6Nb(Al, Ti) from first principles, Scr. Mater. 77 (2014) 37-40.
DOI: 10.1016/j.scriptamat.2014.01.012
Google Scholar
[9]
E.J. Pickering, H. Mathur, A. Bhowmik, O.M.D.M. Messé, J.S. Barnard, M.C. Hardy, R. Krakow, K. Loehnert, H.J. Stone, C.M.F. Rae, Grain-boundary precipitation in Allvac 718Plus, Acta Mater. 60 (2012) 2757-2769.
DOI: 10.1016/j.actamat.2012.01.042
Google Scholar
[10]
Sh. Mukhtarov, V. Valitov, N. Dudova, Properties of bulk and sheet micro-, submicro-, and nanocrystalline Alloy 718, Superalloys 718, 625, 706, and Various Derivatives (2005) 507-516.
DOI: 10.7449/2005/superalloys_2005_507_516
Google Scholar
[11]
Sh. Mukhtarov, Effect of Grain Size on the Superplastic Behavior of a Nanostructured Nickel-Based Superalloy, Mater. Sci. Forum 633-634 (2010) 569-575.
DOI: 10.4028/www.scientific.net/msf.633-634.569
Google Scholar
[12]
V.A. Valitov, Sh. Kh. Mukhtarov, Yu.A. Raskulova, Processing and superplastic properties of nanocrystalline Alloy 718 during warm deformation, Rev. Adv. Mater. Sci. 11 (2006) 159-166.
Google Scholar
[13]
R.Z. Valiev, R.K. Islamgaliev, I.V. Aleksandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[14]
Aerospace Structural Metals Handbook, CINDAS, LLC, West Lafayette, Indiana, (2013).
Google Scholar
[15]
V.A. Valitov, O.A. Kaibyshev, Sh. Kh. Mukhtarov, B.P. Bewlay, M.F.X. Gigliotti, Processing and properties of microcrystalline, submicrocrystalline and nanocrystalline alloy 718, Superalloys 718, 625, 706 and Derivatives (2001) 313-321.
DOI: 10.7449/2001/superalloys_2001_313_321
Google Scholar
[16]
V.A. Valitov, Sh. Mukhtarov, A.P. Zhilyaev, O.A. Ruano, Evolution of microstructure during low temperature superplastic deformation of bulk nanostructured Ni-Cr-Fe-Nb base superalloy, Rev. Adv. Mater. Sci. 25 (2010) 148-154.
Google Scholar
[17]
M. Kumar, A.J. Schwartz, W.E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Acta Mater. 50 (2002) 2599-2612.
DOI: 10.1016/s1359-6454(02)00090-3
Google Scholar
[18]
D. Huber, C. Sommitsch, M. Stockinger, Comparison between microstructure evolution in IN718 and ATI Allvac®718PlusTM - simulation and trial forgings, Adv. Mater. Res. 278 (2011) 168-173.
DOI: 10.4028/www.scientific.net/amr.278.168
Google Scholar