[1]
Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782–817.
DOI: 10.1016/j.actamat.2012.10.038
Google Scholar
[2]
O. Sitdikov, E. Avtokratova, R. Babicheva, T. Sakai, K. Tsuzaki, Y. Watanabe, Influence of processing regimes on fine-grained microstructure development in an AlMgSc alloy by hot equal-channel angular pressing, Mater. Trans. 53(1) (2012) 56–62.
DOI: 10.2320/matertrans.md201108
Google Scholar
[3]
M. Zehetbauer, R. Grössinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, R. Würschum, Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12(8) (2010) 692–700.
DOI: 10.1002/adem.201000119
Google Scholar
[4]
R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured metals for innovative applications, JOM 64(10) (2012) 1134–1142.
DOI: 10.1007/s11837-012-0427-9
Google Scholar
[5]
A. Abdollahi, I. Arias, Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals, Int. J. Fract. 174 (2012) 3–15.
DOI: 10.1007/s10704-011-9664-0
Google Scholar
[6]
V. Yamakov, E. Saether, E. H. Glaessgen, Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding, J. Mater. Sci. 43 (2008) 7488–7494.
DOI: 10.1007/s10853-008-2823-7
Google Scholar
[7]
H.J. Choi, S.W. Lee, J.S. Park, D.H. Bae, Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders, Scripta Mater. 59 (2008) 1123–1126.
DOI: 10.1016/j.scriptamat.2008.07.030
Google Scholar
[8]
I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A560 (2013) 1–24.
DOI: 10.1016/j.msea.2012.09.020
Google Scholar
[9]
T.D. Topping, B. Ahn, Y. Li, S.R. Nutt, E.J. Lavernia, Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy, Metall. Mater. Trans. A43 (2012) 505–519.
DOI: 10.1007/s11661-011-0849-y
Google Scholar
[10]
Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, J.M. Schoenung, Investigation of aluminum-based nanocomposites with ultra-high strength, Mater. Sci. Eng. A527 (2009) 305–316.
DOI: 10.1016/j.msea.2009.07.067
Google Scholar
[11]
B.Q. Han, E.J. Lavernia, Deformation mechanisms of nanostructured Al alloys, Adv. Eng. Mater. 7(6) (2005) 457–465.
DOI: 10.1002/adem.200400219
Google Scholar
[12]
G. Sha, S.P. Ringer, Z.C. Duan, T.G. Langdon, An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing, Int. J. Mater. Res. 100 (2009) 1674–1678.
DOI: 10.3139/146.110227
Google Scholar
[13]
R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, Scripta Mater. 63(9) (2010) 949–952.
DOI: 10.1016/j.scriptamat.2010.07.014
Google Scholar
[14]
R.I. Babicheva, S.V. Dmitriev, Y. Zhang, S.W. Kok, N. Srikanth, B. Liu, K. Zhou, Effect of GB segregations of Fe, Co, Cu, Ti, Mg and Pb on small plastic deformation of nanocrystalline Al, Comput. Mater. Sci. 98 (2015) 410–416.
DOI: 10.1016/j.commatsci.2014.11.038
Google Scholar
[15]
R.I. Babicheva, S.V. Dmitriev, Y. Zhang, S.W. Kok, K. Zhou, Effect of Co Distribution on Plastic Deformation of Nanocrystalline Al-10. 2 at. % Co Alloy, J. Nanomat. (2015), Article ID 231848, 8 pages, http: /dx. doi. org/10. 1155/2015/231848.
DOI: 10.1155/2015/231848
Google Scholar