Effect of Grain Boundary Segregation on Shear Deformation of Nanocrystalline Binary Aluminum Alloys at Room Temperature

Article Preview

Abstract:

The paper studies deformation mechanisms of nanocrystalline (NC) pure Al and its binary alloys with various distributions of an alloying element which can be Co or Mg via molecular dynamics simulations. It is revealed that a shear deformation of the pure Al is associated with the grain boundary sliding (GBS) and their simultaneous migration. Mg atoms in grain boundaries (GBs) of an Al-Mg alloy lead to GBS which does not accompany with a grain growth, while the deformation process of the corresponding alloy with a random distribution of Mg is close to that for the pure Al. Unlike Mg, GB segregations of Co atoms detain both GBS and GB migration and result in high strength of an Al-Co alloy. On the contrary, the strength of the alloy with the Co atoms distributed randomly is very low due to the structure amorphisation leading to the ease of plastic flow.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

89-94

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater. 61 (2013) 782–817.

DOI: 10.1016/j.actamat.2012.10.038

Google Scholar

[2] O. Sitdikov, E. Avtokratova, R. Babicheva, T. Sakai, K. Tsuzaki, Y. Watanabe, Influence of processing regimes on fine-grained microstructure development in an AlMgSc alloy by hot equal-channel angular pressing, Mater. Trans. 53(1) (2012) 56–62.

DOI: 10.2320/matertrans.md201108

Google Scholar

[3] M. Zehetbauer, R. Grössinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, R. Würschum, Bulk nanostructured functional materials by severe plastic deformation, Adv. Eng. Mater. 12(8) (2010) 692–700.

DOI: 10.1002/adem.201000119

Google Scholar

[4] R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, T.G. Langdon, Bulk nanostructured metals for innovative applications, JOM 64(10) (2012) 1134–1142.

DOI: 10.1007/s11837-012-0427-9

Google Scholar

[5] A. Abdollahi, I. Arias, Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals, Int. J. Fract. 174 (2012) 3–15.

DOI: 10.1007/s10704-011-9664-0

Google Scholar

[6] V. Yamakov, E. Saether, E. H. Glaessgen, Multiscale modeling of intergranular fracture in aluminum: constitutive relation for interface debonding, J. Mater. Sci. 43 (2008) 7488–7494.

DOI: 10.1007/s10853-008-2823-7

Google Scholar

[7] H.J. Choi, S.W. Lee, J.S. Park, D.H. Bae, Tensile behavior of bulk nanocrystalline aluminum synthesized by hot extrusion of ball-milled powders, Scripta Mater. 59 (2008) 1123–1126.

DOI: 10.1016/j.scriptamat.2008.07.030

Google Scholar

[8] I. Sabirov, M. Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A560 (2013) 1–24.

DOI: 10.1016/j.msea.2012.09.020

Google Scholar

[9] T.D. Topping, B. Ahn, Y. Li, S.R. Nutt, E.J. Lavernia, Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy, Metall. Mater. Trans. A43 (2012) 505–519.

DOI: 10.1007/s11661-011-0849-y

Google Scholar

[10] Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, J.M. Schoenung, Investigation of aluminum-based nanocomposites with ultra-high strength, Mater. Sci. Eng. A527 (2009) 305–316.

DOI: 10.1016/j.msea.2009.07.067

Google Scholar

[11] B.Q. Han, E.J. Lavernia, Deformation mechanisms of nanostructured Al alloys, Adv. Eng. Mater. 7(6) (2005) 457–465.

DOI: 10.1002/adem.200400219

Google Scholar

[12] G. Sha, S.P. Ringer, Z.C. Duan, T.G. Langdon, An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing, Int. J. Mater. Res. 100 (2009) 1674–1678.

DOI: 10.3139/146.110227

Google Scholar

[13] R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, V.U. Kazykhanov, X. Sauvage, On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, Scripta Mater. 63(9) (2010) 949–952.

DOI: 10.1016/j.scriptamat.2010.07.014

Google Scholar

[14] R.I. Babicheva, S.V. Dmitriev, Y. Zhang, S.W. Kok, N. Srikanth, B. Liu, K. Zhou, Effect of GB segregations of Fe, Co, Cu, Ti, Mg and Pb on small plastic deformation of nanocrystalline Al, Comput. Mater. Sci. 98 (2015) 410–416.

DOI: 10.1016/j.commatsci.2014.11.038

Google Scholar

[15] R.I. Babicheva, S.V. Dmitriev, Y. Zhang, S.W. Kok, K. Zhou, Effect of Co Distribution on Plastic Deformation of Nanocrystalline Al-10. 2 at. % Co Alloy, J. Nanomat. (2015), Article ID 231848, 8 pages, http: /dx. doi. org/10. 1155/2015/231848.

DOI: 10.1155/2015/231848

Google Scholar