[1]
A. Ball and M.M. Hutchinson, Superplasticity in the aluminum-zinc eutectoid, Met. Sci. J. , 3 (1969) 1-6.
Google Scholar
[2]
R. C. Gifkins, Metall. Trans. Grain-boundary sliding and its accommodation during creep and superplasticity, 7A (1976) 1225-1232.
DOI: 10.1007/bf02656607
Google Scholar
[3]
M.F. Ashby and R. A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., 21 (1973) 149-163.
DOI: 10.1016/0001-6160(73)90057-6
Google Scholar
[4]
T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater., 42 (1994) 2437-2443.
DOI: 10.1016/0956-7151(94)90322-0
Google Scholar
[5]
P.S. Bate, F.J. Humphreys, N. Ridley, B. Zhang, Microstructure and texture evolution in the tension of superplastic Al–6Cu–0. 4Zr, Acta Mater., 53 (2005) 3059–3069.
DOI: 10.1016/j.actamat.2005.03.019
Google Scholar
[6]
B.L. Adams, S.I. Wright and K. Kunze, Orientation imaging: The emergence of a new Microscopy, Metall. Trans., 24A (1993) 819-831.
DOI: 10.1007/bf02656503
Google Scholar
[7]
S.I. Wright, M.M. Nowell and D.P. Field, Precision of EBSD based Orientation Measurements, Microsc. Microanal., 17 (2011) 316-329.
DOI: 10.1017/s143192761100290x
Google Scholar
[8]
M. Kamaya, Ultramicroscopy, Assessment of local deformation using EBSD, 111 (2011) 1189–1199.
DOI: 10.1016/j.ultramic.2011.02.004
Google Scholar
[9]
Y.A. Betanda, A. -L. Helbert, F. Brisset, M. -H. Mathon, T. Waeckerlé, T. Baudin, Measurement of stored energy in Fe–48%Ni alloys strongly cold-rolled using three approaches, Mater. Sci. Eng. A614 (2014) 193–198.
DOI: 10.1016/j.msea.2014.07.037
Google Scholar
[10]
Y. Takayama, N. Furushiro, E. Kimijima, H. Kato, Change in crystallographic orientation distribution during superplastic deformation in an Al–Zn–Mg–Cu alloy, Mater. Sci. Eng., A 410–411 (2005) 114–119.
DOI: 10.1016/j.msea.2005.08.056
Google Scholar
[11]
Y. Takayama, E. Harunari and H. Kato, Change in Crystallographic Orientation Distribution during High Temperature Deformation in an Al-Mg-Mn Alloy Sheet Consisting of Coarse- and Fine-Grained Layers, Mater. Trans., 45(2004) 2525-2530.
DOI: 10.2320/matertrans.45.2525
Google Scholar
[12]
Y. Takayama, T. Tozawa and H. Kato, Superplasticity and Thickness of Liquid Phase in the Vicinity of Solidus Temperature in A 7475 Aluminum Alloy, Acta Mater., 47 (1999) 1263-1270.
DOI: 10.1016/s1359-6454(98)00416-9
Google Scholar
[13]
M.C. Dang, J.J. Blandin and B. Baudelet, Flow Stress in a Material with Liquid Grain Boundaries under Different Test Conditions, Acta Metall., 44 (1996) 3991-4002.
DOI: 10.1016/s1359-6454(96)00042-0
Google Scholar
[14]
Y. Takayama and J.A. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans., 45 (2004) 2316-2325.
DOI: 10.2320/matertrans.45.2316
Google Scholar
[15]
Y. Takayama, T. Sasaki and H. Watanabe, Analysis of stress relaxation process by using electron back scatter diffraction technique in oxygen free copper subjected to continuous cyclic bending, J. Japan Inst. Copper, 53 (2014) 106-110.
Google Scholar
[16]
T.G. Langdon, Identifying Creep Mechanisms at Low Stresses, Mater. Sci. Eng. A283 (2000) 266–273.
Google Scholar
[17]
E.A. Calnan and C.J.B. Clews, Deformation textures of face-centered cubic metals, Phil. Mag., 41 (1950) 1085-1100.
DOI: 10.1080/14786445008561151
Google Scholar
[18]
J.K. Mackenzie, The distribution of rotation axes in a random aggregate of cubic crystals, Acta Metall., 12 (1964) 223–225.
DOI: 10.1016/0001-6160(64)90191-9
Google Scholar