[1]
M.F. Ashby and R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall. 21 (1973) 149-163.
DOI: 10.1016/0001-6160(73)90057-6
Google Scholar
[2]
J.R. Spingarn and W.D. Nix, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metall. 26 (1978) 1389-1398.
DOI: 10.1016/0001-6160(78)90154-2
Google Scholar
[3]
O.D. Sherby and J. Wadsworth, Superplasticity—recent advances and future directions, Prog. Mater. Sci. 33 (1989) 169-221.
DOI: 10.1016/0079-6425(89)90004-2
Google Scholar
[4]
A. Ball and M.M. Hutchison, Superplasticity in the aluminium–zinc eutectoid, Met. Sci. J. 3 (1969) 1-7.
Google Scholar
[5]
M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Mater. Sci. Technol. 13 (1997) 825-831.
DOI: 10.1179/mst.1997.13.10.825
Google Scholar
[6]
H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy, Acta Mater. 47 (1999) 3753-3758.
DOI: 10.1016/s1359-6454(99)00253-0
Google Scholar
[7]
H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites, Acta Mater. 49 (2001) 2027-(2037).
DOI: 10.1016/s1359-6454(01)00101-x
Google Scholar
[8]
H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu and K. Higashi, Effective diffusivity for superplastic flow in magnesium alloys, Mater. Sci. Forum. 357-359 (2001) 147-152.
DOI: 10.4028/www.scientific.net/msf.357-359.147
Google Scholar
[9]
W. -J. Kim, S.W. Chung, C.S. Chung and D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures, Acta Mater. 49 (2001) 3337-3345.
DOI: 10.1016/s1359-6454(01)00008-8
Google Scholar
[10]
H. Watanabe, T. Mukai and K. Higashi, Deformation mechanism of fine-grained superplasticity in metallic materials expected from the phenomenological constitutive equation, Mater. Trans. 45 (2004) 2497-2502.
DOI: 10.2320/matertrans.45.2497
Google Scholar
[11]
M.A. Rust and R.I. Todd, High resolution surface studies of superplastic deformation, Mater. Sci. Forum. 551-552 (2007) 615-620.
DOI: 10.4028/www.scientific.net/msf.551-552.615
Google Scholar
[12]
M.A. Rust and R.I. Todd, Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity, Acta Mater. 59 (2011) 5159-5170.
DOI: 10.1016/j.actamat.2011.04.051
Google Scholar
[13]
K. Matsuki, H. Morita, M. Yamada and Y. Murakami, Relative motion of grains during superplastic flow in an Al–9Zn–1wt. %Mg alloy, Met. Sci. 11 (1977) 156-163.
DOI: 10.1179/msc.1977.11.5.156
Google Scholar
[14]
H. Somekawa, A. Singh and T. Mukai, Superplastic behavior in Mg–Zn–Y Alloy with dispersed quasicrystal phase particles, Adv. Eng. Mater. 11 (2009) 782-787.
DOI: 10.1002/adem.200900110
Google Scholar
[15]
H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa and K. Higashi, Isotropic superplastic flow in textured magnesium alloy, Mater. Sci. Eng. A 558 (2012) 656-662.
DOI: 10.1016/j.msea.2012.08.070
Google Scholar
[16]
H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa and K. Higashi, Accommodation mechanisms for grain boundary sliding as inferred from texture evolution during superplastic deformation, Philos. Mag. 93 (2013) 2913-2931.
DOI: 10.1080/14786435.2013.793460
Google Scholar
[17]
H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa and K. Higashi, Grain boundary relaxation in fine-grained magnesium solid solutions, Philos. Mag. 91 (2011) 4158-4171.
DOI: 10.1080/14786435.2011.603370
Google Scholar
[18]
H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa and K. Higashi, Threshold stress for superplasticity in solid solution magnesium alloys, Philos. Mag. 92 (2012) 787-803.
DOI: 10.1080/14786435.2011.634849
Google Scholar
[19]
H. Somekawa, H. Watanabe and T. Mukai, Effect of solute atoms on grain boundary sliding in magnesium alloys, Philos. Mag. 94 (2014) 1345-1360.
DOI: 10.1080/14786435.2014.886021
Google Scholar
[20]
R.E. Reed-Hill and W.D. Robertson, The crystallographic characteristics of fracture in magnesium single crystals, Acta Metall. 5 (1957) 728-737.
DOI: 10.1016/0001-6160(57)90075-5
Google Scholar
[21]
H. Yoshinaga and R. Horiuchi, On the flow stress of α solid solution Mg–Li alloy single crystals, Trans. JIM 4 (1963) 134-141.
DOI: 10.2320/matertrans1960.4.134
Google Scholar
[22]
H. Watanabe, M. Fukusumi, H. Somekawa and T. Mukai, Texture and mechanical properties of superplastically deformed magnesium alloy rod, Mater. Sci. Eng. A 527 (2010) 6350-6358.
DOI: 10.1016/j.msea.2010.06.053
Google Scholar
[23]
H. Watanabe and M. Fukusumi, Tension-compression asymmetry under superplastic flow in magnesium alloys, J. Mater. Eng. Perform. 23 (2014) 3551-3557.
DOI: 10.1007/s11665-014-1176-4
Google Scholar
[24]
R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma and P.E. Krajewski, Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy, Acta Mater. 57 (2009) 3683-3693.
DOI: 10.1016/j.actamat.2009.04.011
Google Scholar