Texture Change during Superplastic Deformation in Fine-Grained Magnesium Alloys

Article Preview

Abstract:

Texture change during superplastic deformation was examined and compared in two magnesium alloys with different chemical composition. These alloys were extruded to refine the microstructure. The pre-existing basal texture of both alloys became slightly more random within the bulk probably owing to grain boundary sliding and the accompanying grain rotation. However, the texture changes differed between tensile and compressive deformation along the extrusion (longitudinal) direction. This fact suggests that dislocation slip is important in superplastic deformation. It was concluded that dislocation slip acts primarily as an accommodation mechanism for grain boundary sliding.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

59-65

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Ashby and R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall. 21 (1973) 149-163.

DOI: 10.1016/0001-6160(73)90057-6

Google Scholar

[2] J.R. Spingarn and W.D. Nix, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metall. 26 (1978) 1389-1398.

DOI: 10.1016/0001-6160(78)90154-2

Google Scholar

[3] O.D. Sherby and J. Wadsworth, Superplasticity—recent advances and future directions, Prog. Mater. Sci. 33 (1989) 169-221.

DOI: 10.1016/0079-6425(89)90004-2

Google Scholar

[4] A. Ball and M.M. Hutchison, Superplasticity in the aluminium–zinc eutectoid, Met. Sci. J. 3 (1969) 1-7.

Google Scholar

[5] M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Mater. Sci. Technol. 13 (1997) 825-831.

DOI: 10.1179/mst.1997.13.10.825

Google Scholar

[6] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy, Acta Mater. 47 (1999) 3753-3758.

DOI: 10.1016/s1359-6454(99)00253-0

Google Scholar

[7] H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites, Acta Mater. 49 (2001) 2027-(2037).

DOI: 10.1016/s1359-6454(01)00101-x

Google Scholar

[8] H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu and K. Higashi, Effective diffusivity for superplastic flow in magnesium alloys, Mater. Sci. Forum. 357-359 (2001) 147-152.

DOI: 10.4028/www.scientific.net/msf.357-359.147

Google Scholar

[9] W. -J. Kim, S.W. Chung, C.S. Chung and D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures, Acta Mater. 49 (2001) 3337-3345.

DOI: 10.1016/s1359-6454(01)00008-8

Google Scholar

[10] H. Watanabe, T. Mukai and K. Higashi, Deformation mechanism of fine-grained superplasticity in metallic materials expected from the phenomenological constitutive equation, Mater. Trans. 45 (2004) 2497-2502.

DOI: 10.2320/matertrans.45.2497

Google Scholar

[11] M.A. Rust and R.I. Todd, High resolution surface studies of superplastic deformation, Mater. Sci. Forum. 551-552 (2007) 615-620.

DOI: 10.4028/www.scientific.net/msf.551-552.615

Google Scholar

[12] M.A. Rust and R.I. Todd, Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity, Acta Mater. 59 (2011) 5159-5170.

DOI: 10.1016/j.actamat.2011.04.051

Google Scholar

[13] K. Matsuki, H. Morita, M. Yamada and Y. Murakami, Relative motion of grains during superplastic flow in an Al–9Zn–1wt. %Mg alloy, Met. Sci. 11 (1977) 156-163.

DOI: 10.1179/msc.1977.11.5.156

Google Scholar

[14] H. Somekawa, A. Singh and T. Mukai, Superplastic behavior in Mg–Zn–Y Alloy with dispersed quasicrystal phase particles, Adv. Eng. Mater. 11 (2009) 782-787.

DOI: 10.1002/adem.200900110

Google Scholar

[15] H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa and K. Higashi, Isotropic superplastic flow in textured magnesium alloy, Mater. Sci. Eng. A 558 (2012) 656-662.

DOI: 10.1016/j.msea.2012.08.070

Google Scholar

[16] H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa and K. Higashi, Accommodation mechanisms for grain boundary sliding as inferred from texture evolution during superplastic deformation, Philos. Mag. 93 (2013) 2913-2931.

DOI: 10.1080/14786435.2013.793460

Google Scholar

[17] H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa and K. Higashi, Grain boundary relaxation in fine-grained magnesium solid solutions, Philos. Mag. 91 (2011) 4158-4171.

DOI: 10.1080/14786435.2011.603370

Google Scholar

[18] H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa and K. Higashi, Threshold stress for superplasticity in solid solution magnesium alloys, Philos. Mag. 92 (2012) 787-803.

DOI: 10.1080/14786435.2011.634849

Google Scholar

[19] H. Somekawa, H. Watanabe and T. Mukai, Effect of solute atoms on grain boundary sliding in magnesium alloys, Philos. Mag. 94 (2014) 1345-1360.

DOI: 10.1080/14786435.2014.886021

Google Scholar

[20] R.E. Reed-Hill and W.D. Robertson, The crystallographic characteristics of fracture in magnesium single crystals, Acta Metall. 5 (1957) 728-737.

DOI: 10.1016/0001-6160(57)90075-5

Google Scholar

[21] H. Yoshinaga and R. Horiuchi, On the flow stress of α solid solution Mg–Li alloy single crystals, Trans. JIM 4 (1963) 134-141.

DOI: 10.2320/matertrans1960.4.134

Google Scholar

[22] H. Watanabe, M. Fukusumi, H. Somekawa and T. Mukai, Texture and mechanical properties of superplastically deformed magnesium alloy rod, Mater. Sci. Eng. A 527 (2010) 6350-6358.

DOI: 10.1016/j.msea.2010.06.053

Google Scholar

[23] H. Watanabe and M. Fukusumi, Tension-compression asymmetry under superplastic flow in magnesium alloys, J. Mater. Eng. Perform. 23 (2014) 3551-3557.

DOI: 10.1007/s11665-014-1176-4

Google Scholar

[24] R. Panicker, A.H. Chokshi, R.K. Mishra, R. Verma and P.E. Krajewski, Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy, Acta Mater. 57 (2009) 3683-3693.

DOI: 10.1016/j.actamat.2009.04.011

Google Scholar