Description of the Superplastic Flow Process by Deformation Mechanism Maps in Ultrafine-Grained Materials

Article Preview

Abstract:

The synthesis of ultrafine-grained (UFG) materials is very attractive because small grains lead to excellent creep properties including superplastic ductility at elevated temperatures. Severe plastic deformation (SPD) is an attractive processing technique for refining microstructures of metallic materials to have ultrafine grain sizes within the submicrometer to even the nanometer level. Among the SPD techniques, most effective processing is conducted through equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) and there are numerous reports demonstrating the improved tensile properties at elevated temperature. This report demonstrates recent results on superplasticity in metals after ECAP and HPT. Moreover, superplastic flow of the UFG materials is evaluated by using flow mechanisms developed earlier for coarse-grained materials and depicted by plotting deformation mechanism maps which provide excellent visual representations of flow properties over a wide range of testing conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

51-58

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, The mechanical properties of superplastic materials, Metall. Trans. A 13A (1982) 689-701.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[3] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[4] A. P. Zhilyaev, T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[5] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta. Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[6] R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, T.G. Langdon, Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes, Scripta Mater. 37 (1997) 1945-(1950).

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[7] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[8] K. Higashi, M. Mabuchi, T.G. Langdon, High-strain-rate superplasticity in metallic materials and the potential for ceramic materials, ISIJ Intl. 36 (1996) 1423-1438.

DOI: 10.2355/isijinternational.36.1423

Google Scholar

[9] R.Z. Valiev, O.A. Kaibyshev, R.I. Kuznetsov, R. Sh. Musalimov, N.K. Tsenev, Low-temperature superplasticity of metallic materials, Dokl. Akad. Nauk. SSSR (Proc. USSR Acad. Sci. ) 301 (1988) 864–866.

Google Scholar

[10] M. Kawasaki, T. G. Langdon. Principles of superplasticity in ultrafine-grained materials, J. Mater. Sci. 42 (2007) 1782-1796.

DOI: 10.1007/s10853-006-0954-2

Google Scholar

[11] M. Kawasaki, T. G. Langdon. Review: achieving superplasticity in metals processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 6487-6496.

DOI: 10.1007/s10853-014-8204-5

Google Scholar

[12] M. Kawasaki, N. Balasubramanian, T. G. Langdon. Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity, Mater. Sci. Eng. A 528 (2010) 6624-6629.

DOI: 10.1016/j.msea.2011.05.005

Google Scholar

[13] M.E. Kassner, M. -T. Pérez-Prado, Five-power-law creep in single phase metals and alloys, Prog. Mater. Sci. 45 (2000) 1-102.

DOI: 10.1016/s0079-6425(99)00011-0

Google Scholar

[14] M.F. Ashby, A first report on deformation-mechanism maps. Acta Metall. 20 (1972) 887-897.

DOI: 10.1016/0001-6160(72)90082-x

Google Scholar

[15] F.A. Mohamed, T.G. Langdon, Deformation mechanism maps based on grain size, Metall. Trans. 5 (1974) 2339-2345.

DOI: 10.1007/bf02644014

Google Scholar

[16] T.G. Langdon, F.A. Mohamed, A new type of deformation mechanism map for high temperature creep, Mater. Sci. Eng. 32 (1978) 103-112.

DOI: 10.1016/0025-5416(78)90029-0

Google Scholar

[17] T.G. Langdon, F.A. Mohamed, A simple method of constructing an Ashby-type deformation mechanism map, J. Mater. Sci. 13 (1978) 1282-1290.

DOI: 10.1007/bf00544735

Google Scholar

[18] M. Kawasaki, T.G. Langdon, The many facets of deformation mechanism mapping and the application to nanostructured materials, J. Mater. Res. 28 (2013) 1827-1834.

DOI: 10.1557/jmr.2013.55

Google Scholar

[19] M. Kawasaki, T.G. Langdon, Characteristics of high temperature creep in pure aluminum processed by equal-channel angular pressing, Mater. Sci. Forum 638-642 (2010) 1965-(1970).

DOI: 10.4028/www.scientific.net/msf.638-642.1965

Google Scholar

[20] M. Kawasaki, I.J. Beyerlein, S.C. Vogel, T.G. Langdon, Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing, Acta Mater. 56 (2008) 2307-2317.

DOI: 10.1016/j.actamat.2008.01.023

Google Scholar

[21] M. Kawasaki, T.G. Langdon, Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation, Mater. Trans. 49 (2008) 84-89.

DOI: 10.2320/matertrans.me200720

Google Scholar

[22] M. Kawasaki, T.G. Langdon, Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion, Mater. Sci. Eng. A 528 (2011) 6140-6145.

DOI: 10.1016/j.msea.2011.04.053

Google Scholar

[23] Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E. Lavernia, Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Mater. 59 (2008) 627-630.

DOI: 10.1016/j.scriptamat.2008.05.031

Google Scholar

[24] H. Ishikawa, F.A. Mohamed, T.G. Langdon, The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid, Phil. Mag. 32 (1975) 1269-1271.

DOI: 10.1080/14786437508228105

Google Scholar

[25] M. Kawasaki, S. Lee, T.G. Langdon, Constructing a deformation mechanism map for a superplastic Pb–Sn alloy processed by equal-channel angular pressing, Scripta Mater. 61 (2009) 963-966.

DOI: 10.1016/j.scriptamat.2009.08.001

Google Scholar

[26] M. Kawasaki, A.A. Mendes, V.L. Sordi, M. Ferrante, T.G. Langdon, Achieving superplastic properties in a Pb-Sn eutectic alloy processed by equal-channel angular pressing, J. Mater. Sci. 46 (2011) 155-160.

DOI: 10.1007/s10853-010-4889-2

Google Scholar

[27] M. Kawasaki, J. Foissey, T.G. Langdon, Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion, Mater. Sci. Eng. A 561 (2013) 118-125.

DOI: 10.1016/j.msea.2012.10.096

Google Scholar

[28] A.H. Chokshi, T.G. Langdon, The mechanical properties of the superplastic Al- 33 Pct Cu eutectic alloy, Metall. Trans. A 19A (1988) 2487-2496.

DOI: 10.1007/bf02645476

Google Scholar

[29] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, G. Wilde, Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing, Acta Mater. 59 (2011) 1974-(1985).

DOI: 10.1016/j.actamat.2010.11.063

Google Scholar

[30] B. Ahn, A.P. Zhilyaev, H. -J. Lee, M. Kawasaki, T.G. Langdon, Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature, Mater. Sci. Eng. A 635 (2015) 109-117.

DOI: 10.1016/j.msea.2015.03.042

Google Scholar