[1]
F. Wakai, S. Sakaguchi, H. Matsuno, Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals, Adv. Ceram. Mater. 1 (1986) 259-263.
DOI: 10.1111/j.1551-2916.1986.tb00026.x
Google Scholar
[2]
X. Wu, I. -W. Chen, Superplastic bulging of fine-grained zirconia, J. Am. Ceram. Soc., 73 (1990) 746-749.
DOI: 10.1111/j.1151-2916.1990.tb06585.x
Google Scholar
[3]
I.A. Akmoulin, M. Djahazi, N.D. Buravova, J.J. Jonas, Superplastic forging properties for manufacture of ceramic yttria stabilized tetragonal zirconia products, Mater. Sci. Tech. 9 (1993) 26-33.
DOI: 10.1179/mst.1993.9.1.26
Google Scholar
[4]
J. Wittenauer, Applications of ceramic superplasticity challenges and opportunities, Mater. Sci. Forum 243-245 (1997) 653-662.
DOI: 10.4028/www.scientific.net/msf.243-245.653
Google Scholar
[5]
A. Domínguez-Rodríguez, F. Guiberteau, M. Jiménez-Melendo, Heterogeneous junction of yttria partially stabilized zirconia by superplastic flow, J. Mater. Res. 13 (1998) 1631-1636.
DOI: 10.1557/jmr.1998.0224
Google Scholar
[6]
A.H. Chokshi, Superplasticity in fine-grained ceramic and ceramic composites: current understanding and future prospects, Mater. Sci. Eng. A 166 (1993) 119-133.
DOI: 10.1016/0921-5093(93)90316-7
Google Scholar
[7]
T. Sakuma, Aspects on superplasticity in fine-grained ceramics, Mater. Sci. Forum 243-245 (1997) 327-336.
DOI: 10.4028/www.scientific.net/msf.243-245.327
Google Scholar
[8]
T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, UK, 1997, pp.91-124.
Google Scholar
[9]
T. G. Nieh, C. M. McNelly, J. Wadworth, Superplastic behavior of a yttria-stabilized tetragonal zirconia polycrystal, Scr. Metall. 22 (1988) 1297-1300.
DOI: 10.1016/s0036-9748(88)80150-9
Google Scholar
[10]
K. Kajihara, Y. Yoshizawa, T. Sakuma, Enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping, Acta Metall. Mater. 43 (1995) 1235-1242.
DOI: 10.1016/0956-7151(94)00320-h
Google Scholar
[11]
B. -N. Kim, K. Hiraga, K. Morita, Y. Sakka, T. Yamada, Enhanced tensile ductility in ZrO2-Al2O3-spinel composite ceramic, Scripta Mater. 47 (2002) 775-779.
DOI: 10.1016/s1359-6462(02)00300-7
Google Scholar
[12]
T.G. Nieh, J. Wadsworth, Superplastic behavior of a fine-grained, yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP), Acta. Metall. Mater. 38 (1990) 1121-1133.
DOI: 10.1016/0956-7151(90)90185-j
Google Scholar
[13]
Y. Ma, T.G. Langdon, An examination of the implication of void growth in submicrometer and nanocrystalline structures, Mater. Sci. Eng. A168 (1993) 225-230.
Google Scholar
[14]
M. Jiménez-Melendo, A. Domínguez-Rodríguez, A. Bravo-León, Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: Constitutive equation and deformation mechanisms, J. Am. Ceram. Soc. 81 (1998) 2761-2776.
DOI: 10.1111/j.1151-2916.1998.tb02695.x
Google Scholar
[15]
Y. Yoshizawa, T. Sakuma, Improvement of tensile ductility in high-purity alumina due to magnesia addition, Acta Metall. Mater. 40 (1992) 2943-2950.
DOI: 10.1016/0956-7151(92)90458-q
Google Scholar
[16]
J.A. Hines, Y. Ikuhara, A.H. Chokshi, T. Sakuma, The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia, Acta Mater. 46 (1998) 5557-5568.
DOI: 10.1016/s1359-6454(98)00171-2
Google Scholar
[17]
M. Oka, N. Tabuchi, T. Takashi, High strain rate superplasticity in ceramics, Mater. Sci. Forum 304-306 (1999) 451-458.
DOI: 10.4028/www.scientific.net/msf.304-306.451
Google Scholar
[18]
J. Mimurada, M. Nakano, K. Sasaki, Y. Ikuhara, T. Sakuma, Effect of cation doping on the superplastic flow in yttria-stabilized tetragonal zirconia polycrystals, J. Am. Ceram. Soc. 84 (2001) 1817-1821.
DOI: 10.1111/j.1151-2916.2001.tb00920.x
Google Scholar
[19]
J. Mimurada, K. Sasaki, Y. Ikuhara, T. Sakuma, Superplastic behavior in GeO2 doped Y-TZP, Mater. Trans. JIM 40 (1999) 836-841.
DOI: 10.2320/matertrans1989.40.836
Google Scholar
[20]
P.E.J. Flewitt, R.K. Wild, Grain Boundaries - Their Microstructure and Chemistry, John Wiley & Sons, New York, 2001, pp.35-85.
Google Scholar
[21]
T. Sakuma, K. Higashi, Summary in the project Towards innovation in superplasticity, Mater. Trans. JIM 40 (1999) 702-715.
DOI: 10.2320/matertrans1989.40.702
Google Scholar
[22]
K. Hiraga, B. -N. Kim, K. Morita, H. Yoshida, Y. Sakka, M. Tabuchi, High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms, Acta Metall. Sin. 24 (2011) 195-204.
DOI: 10.4028/www.scientific.net/ast.45.923
Google Scholar
[23]
K. Morita, K. Hiraga, Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol. % yttria, Acta Mater. 50 (2002) 1075-1085.
DOI: 10.1016/s1359-6454(01)00407-4
Google Scholar
[24]
K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto, T. Sakuma, The effect of grain boundary segregation on superplastic behavior in cation-doped 3Y-TZP, Scripta Mater. 49 (2003) 791-795.
DOI: 10.1016/s1359-6462(03)00408-1
Google Scholar
[25]
K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto, T. Sakuma, GeO2-doping dependence of high temperature superplastic behavior in 3Y-TZP, Mater. Trans. 45 (2004) 2569-2572.
DOI: 10.2320/matertrans.45.2569
Google Scholar
[26]
H. Yoshida, K. Morita, B. -N. Kim, K. Hiraga, T. Yamamoto, Doping amount and temperature dependence of superplastic flow in tetragonal ZrO2 polycrystal doped with TiO2 and/or GeO2, Acta Mater. 57 (2009) 3029-3038.
DOI: 10.1016/j.actamat.2009.03.009
Google Scholar
[27]
T.S. Suzuki, Y. Sakka, K. Morita, K. Hiraga, Enhanced superplasticity in a alumina-containing zirconia prepared by colloidal processing, Scripta Mater. 43 (2000) 705-710.
DOI: 10.1016/s1359-6462(00)00469-3
Google Scholar
[28]
H. Yoshida, K. Morita, B. -N. Kim, K. Hiraga, Ionic conductivity of tetragonal ZrO2 polycrystal doped with TiO2 and GeO2, J. Eur. Ceram. Soc. 29 (2009) 411-418.
DOI: 10.1016/j.jeurceramsoc.2008.06.016
Google Scholar
[29]
C.A. Handwerker, J.M. Dynys, R.M. Cannon, R.L. Coble, Dihedral angles in magnesia and alumina – distributions from surface thermal grooves, J. Am. Ceram. Soc. 73 (1990) 1371-1377.
DOI: 10.1111/j.1151-2916.1990.tb05207.x
Google Scholar
[30]
A. Tsoga, P. Nikolopoulos, Grooves andgles and surface mass-transport in polycrystalline alumina, J. Am. Ceram. Soc. 77 (1994) 954-960.
DOI: 10.1111/j.1151-2916.1994.tb07252.x
Google Scholar
[31]
W. Shin, W. -S. Seo, K. Koumoto, Grain-boundary grooves and surface diffusion in polycrystalline alumina measured by atomic force microscope, J. Eur. Ceram. Soc. 18 (1998) 595-600.
DOI: 10.1016/s0955-2219(97)00207-0
Google Scholar
[32]
D.M. Saylor, G.S. Rohrer, Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc. 82 (1999) 1529-1536.
DOI: 10.1111/j.1151-2916.1999.tb01951.x
Google Scholar
[33]
H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara, T. Sakuma, High-temperature grain boundary and grain boundary energy in cubic sliding behavior zirconia bicrystals, Acta Mater. 52 (2004) 2349-2357.
DOI: 10.1016/j.actamat.2004.01.026
Google Scholar
[34]
H. Adachi, M. Tsukada, C. Satoko, Discrete variatinoal Xa cluster calculations. I. Application to metal clusters, J. Phys. Soc. Japan 45 (1978) 875-883.
DOI: 10.1143/jpsj.45.875
Google Scholar
[35]
R. Wu, A.J. Freeman, G.B. Olson, Effects of carbon on Fe-grain-boundary cohesion: First-principles determination, Phys. Rev. B53 (1996) 7504-7509.
DOI: 10.1103/physrevb.53.7504
Google Scholar
[36]
D.M. Hulbert, D. Jiang, J.D. Kuntz, Y. Kodera, A.K. Mukherjee, A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic, Scripta Mater. 56 (2007) 1103-1106.
DOI: 10.1016/j.scriptamat.2007.02.003
Google Scholar
[37]
H. Yoshida, K. Matsui, Y. Ikuhara, Low-temperature superplasticity in nanocrystalline tetragonal zirconia polycrystal (TZP), J. Am. Ceram. Soc. 95 (2012) 1701-1708.
DOI: 10.1111/j.1551-2916.2012.05150.x
Google Scholar
[38]
T.G. Nieh, C.M. McNally, J. Wadsworth, Superplastic behavior of a 20% Al2O3/YTZ ceramic composite, Scripta Metall. 23 (1989) 457-460.
DOI: 10.1016/0036-9748(89)90432-8
Google Scholar
[39]
B. -N. Kim, K. Hiraga, K. Morita, Y. Sakka, Superplasticity in alumina enhanced by co-dispersion of 10% zirconia and 10% spinel particles, Acta Mater. 49 (2001) 887-895.
DOI: 10.1016/s1359-6454(00)00376-1
Google Scholar
[40]
W.J. Kim, J. Wadsworth, O.D. Sherby, Tensile ductility of superplastic ceramics and metallic alloys, Acta Mater. 39 (1991) 199-208.
DOI: 10.1016/0956-7151(91)90268-6
Google Scholar