Improvement of Superplasticity in Fine-Grained Oxide Ceramics Based on the Concept of Grain Boundary Plasticity

Article Preview

Abstract:

Superplasticity in fine-grained oxide ceramics has been generally elucidated on the basis of their experimental strain rate-flow stress relationship and phenomenological analysis of cavity nucleation and growth. It has been widely accepted that the high temperature superplastic flow and failure in ceramics is significantly influenced by the atomic structure and chemistry of grain boundaries. Such phenomenon cannot be explained based on the classical phenomenological analysis. Our research group has therefore proposed to establish a new research field, grain boundary plasticity, to describe the superplastic deformation related to the grain boundary atomic structure. This paper aims to point out the importance of the atomistic analysis of grain boundary to develop new superplastic ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

34-40

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Wakai, S. Sakaguchi, H. Matsuno, Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals, Adv. Ceram. Mater. 1 (1986) 259-263.

DOI: 10.1111/j.1551-2916.1986.tb00026.x

Google Scholar

[2] X. Wu, I. -W. Chen, Superplastic bulging of fine-grained zirconia, J. Am. Ceram. Soc., 73 (1990) 746-749.

DOI: 10.1111/j.1151-2916.1990.tb06585.x

Google Scholar

[3] I.A. Akmoulin, M. Djahazi, N.D. Buravova, J.J. Jonas, Superplastic forging properties for manufacture of ceramic yttria stabilized tetragonal zirconia products, Mater. Sci. Tech. 9 (1993) 26-33.

DOI: 10.1179/mst.1993.9.1.26

Google Scholar

[4] J. Wittenauer, Applications of ceramic superplasticity challenges and opportunities, Mater. Sci. Forum 243-245 (1997) 653-662.

DOI: 10.4028/www.scientific.net/msf.243-245.653

Google Scholar

[5] A. Domínguez-Rodríguez, F. Guiberteau, M. Jiménez-Melendo, Heterogeneous junction of yttria partially stabilized zirconia by superplastic flow, J. Mater. Res. 13 (1998) 1631-1636.

DOI: 10.1557/jmr.1998.0224

Google Scholar

[6] A.H. Chokshi, Superplasticity in fine-grained ceramic and ceramic composites: current understanding and future prospects, Mater. Sci. Eng. A 166 (1993) 119-133.

DOI: 10.1016/0921-5093(93)90316-7

Google Scholar

[7] T. Sakuma, Aspects on superplasticity in fine-grained ceramics, Mater. Sci. Forum 243-245 (1997) 327-336.

DOI: 10.4028/www.scientific.net/msf.243-245.327

Google Scholar

[8] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge, UK, 1997, pp.91-124.

Google Scholar

[9] T. G. Nieh, C. M. McNelly, J. Wadworth, Superplastic behavior of a yttria-stabilized tetragonal zirconia polycrystal, Scr. Metall. 22 (1988) 1297-1300.

DOI: 10.1016/s0036-9748(88)80150-9

Google Scholar

[10] K. Kajihara, Y. Yoshizawa, T. Sakuma, Enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping, Acta Metall. Mater. 43 (1995) 1235-1242.

DOI: 10.1016/0956-7151(94)00320-h

Google Scholar

[11] B. -N. Kim, K. Hiraga, K. Morita, Y. Sakka, T. Yamada, Enhanced tensile ductility in ZrO2-Al2O3-spinel composite ceramic, Scripta Mater. 47 (2002) 775-779.

DOI: 10.1016/s1359-6462(02)00300-7

Google Scholar

[12] T.G. Nieh, J. Wadsworth, Superplastic behavior of a fine-grained, yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP), Acta. Metall. Mater. 38 (1990) 1121-1133.

DOI: 10.1016/0956-7151(90)90185-j

Google Scholar

[13] Y. Ma, T.G. Langdon, An examination of the implication of void growth in submicrometer and nanocrystalline structures, Mater. Sci. Eng. A168 (1993) 225-230.

Google Scholar

[14] M. Jiménez-Melendo, A. Domínguez-Rodríguez, A. Bravo-León, Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: Constitutive equation and deformation mechanisms, J. Am. Ceram. Soc. 81 (1998) 2761-2776.

DOI: 10.1111/j.1151-2916.1998.tb02695.x

Google Scholar

[15] Y. Yoshizawa, T. Sakuma, Improvement of tensile ductility in high-purity alumina due to magnesia addition, Acta Metall. Mater. 40 (1992) 2943-2950.

DOI: 10.1016/0956-7151(92)90458-q

Google Scholar

[16] J.A. Hines, Y. Ikuhara, A.H. Chokshi, T. Sakuma, The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia, Acta Mater. 46 (1998) 5557-5568.

DOI: 10.1016/s1359-6454(98)00171-2

Google Scholar

[17] M. Oka, N. Tabuchi, T. Takashi, High strain rate superplasticity in ceramics, Mater. Sci. Forum 304-306 (1999) 451-458.

DOI: 10.4028/www.scientific.net/msf.304-306.451

Google Scholar

[18] J. Mimurada, M. Nakano, K. Sasaki, Y. Ikuhara, T. Sakuma, Effect of cation doping on the superplastic flow in yttria-stabilized tetragonal zirconia polycrystals, J. Am. Ceram. Soc. 84 (2001) 1817-1821.

DOI: 10.1111/j.1151-2916.2001.tb00920.x

Google Scholar

[19] J. Mimurada, K. Sasaki, Y. Ikuhara, T. Sakuma, Superplastic behavior in GeO2 doped Y-TZP, Mater. Trans. JIM 40 (1999) 836-841.

DOI: 10.2320/matertrans1989.40.836

Google Scholar

[20] P.E.J. Flewitt, R.K. Wild, Grain Boundaries - Their Microstructure and Chemistry, John Wiley & Sons, New York, 2001, pp.35-85.

Google Scholar

[21] T. Sakuma, K. Higashi, Summary in the project Towards innovation in superplasticity, Mater. Trans. JIM 40 (1999) 702-715.

DOI: 10.2320/matertrans1989.40.702

Google Scholar

[22] K. Hiraga, B. -N. Kim, K. Morita, H. Yoshida, Y. Sakka, M. Tabuchi, High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms, Acta Metall. Sin. 24 (2011) 195-204.

DOI: 10.4028/www.scientific.net/ast.45.923

Google Scholar

[23] K. Morita, K. Hiraga, Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol. % yttria, Acta Mater. 50 (2002) 1075-1085.

DOI: 10.1016/s1359-6454(01)00407-4

Google Scholar

[24] K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto, T. Sakuma, The effect of grain boundary segregation on superplastic behavior in cation-doped 3Y-TZP, Scripta Mater. 49 (2003) 791-795.

DOI: 10.1016/s1359-6462(03)00408-1

Google Scholar

[25] K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto, T. Sakuma, GeO2-doping dependence of high temperature superplastic behavior in 3Y-TZP, Mater. Trans. 45 (2004) 2569-2572.

DOI: 10.2320/matertrans.45.2569

Google Scholar

[26] H. Yoshida, K. Morita, B. -N. Kim, K. Hiraga, T. Yamamoto, Doping amount and temperature dependence of superplastic flow in tetragonal ZrO2 polycrystal doped with TiO2 and/or GeO2, Acta Mater. 57 (2009) 3029-3038.

DOI: 10.1016/j.actamat.2009.03.009

Google Scholar

[27] T.S. Suzuki, Y. Sakka, K. Morita, K. Hiraga, Enhanced superplasticity in a alumina-containing zirconia prepared by colloidal processing, Scripta Mater. 43 (2000) 705-710.

DOI: 10.1016/s1359-6462(00)00469-3

Google Scholar

[28] H. Yoshida, K. Morita, B. -N. Kim, K. Hiraga, Ionic conductivity of tetragonal ZrO2 polycrystal doped with TiO2 and GeO2, J. Eur. Ceram. Soc. 29 (2009) 411-418.

DOI: 10.1016/j.jeurceramsoc.2008.06.016

Google Scholar

[29] C.A. Handwerker, J.M. Dynys, R.M. Cannon, R.L. Coble, Dihedral angles in magnesia and alumina – distributions from surface thermal grooves, J. Am. Ceram. Soc. 73 (1990) 1371-1377.

DOI: 10.1111/j.1151-2916.1990.tb05207.x

Google Scholar

[30] A. Tsoga, P. Nikolopoulos, Grooves andgles and surface mass-transport in polycrystalline alumina, J. Am. Ceram. Soc. 77 (1994) 954-960.

DOI: 10.1111/j.1151-2916.1994.tb07252.x

Google Scholar

[31] W. Shin, W. -S. Seo, K. Koumoto, Grain-boundary grooves and surface diffusion in polycrystalline alumina measured by atomic force microscope, J. Eur. Ceram. Soc. 18 (1998) 595-600.

DOI: 10.1016/s0955-2219(97)00207-0

Google Scholar

[32] D.M. Saylor, G.S. Rohrer, Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc. 82 (1999) 1529-1536.

DOI: 10.1111/j.1151-2916.1999.tb01951.x

Google Scholar

[33] H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara, T. Sakuma, High-temperature grain boundary and grain boundary energy in cubic sliding behavior zirconia bicrystals, Acta Mater. 52 (2004) 2349-2357.

DOI: 10.1016/j.actamat.2004.01.026

Google Scholar

[34] H. Adachi, M. Tsukada, C. Satoko, Discrete variatinoal Xa cluster calculations. I. Application to metal clusters, J. Phys. Soc. Japan 45 (1978) 875-883.

DOI: 10.1143/jpsj.45.875

Google Scholar

[35] R. Wu, A.J. Freeman, G.B. Olson, Effects of carbon on Fe-grain-boundary cohesion: First-principles determination, Phys. Rev. B53 (1996) 7504-7509.

DOI: 10.1103/physrevb.53.7504

Google Scholar

[36] D.M. Hulbert, D. Jiang, J.D. Kuntz, Y. Kodera, A.K. Mukherjee, A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic, Scripta Mater. 56 (2007) 1103-1106.

DOI: 10.1016/j.scriptamat.2007.02.003

Google Scholar

[37] H. Yoshida, K. Matsui, Y. Ikuhara, Low-temperature superplasticity in nanocrystalline tetragonal zirconia polycrystal (TZP), J. Am. Ceram. Soc. 95 (2012) 1701-1708.

DOI: 10.1111/j.1551-2916.2012.05150.x

Google Scholar

[38] T.G. Nieh, C.M. McNally, J. Wadsworth, Superplastic behavior of a 20% Al2O3/YTZ ceramic composite, Scripta Metall. 23 (1989) 457-460.

DOI: 10.1016/0036-9748(89)90432-8

Google Scholar

[39] B. -N. Kim, K. Hiraga, K. Morita, Y. Sakka, Superplasticity in alumina enhanced by co-dispersion of 10% zirconia and 10% spinel particles, Acta Mater. 49 (2001) 887-895.

DOI: 10.1016/s1359-6454(00)00376-1

Google Scholar

[40] W.J. Kim, J. Wadsworth, O.D. Sherby, Tensile ductility of superplastic ceramics and metallic alloys, Acta Mater. 39 (1991) 199-208.

DOI: 10.1016/0956-7151(91)90268-6

Google Scholar