[1]
T.G. Langdon, R.C. Gifkins, On the nature of superplastic deformation in the Mg-Al eutectic, Scripta Metall. 4 (1970) 337-340.
DOI: 10.1016/0036-9748(70)90096-7
Google Scholar
[2]
C.E. Pearson, The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin, J. Inst. Metals 54 (1934) 111-123.
Google Scholar
[3]
T.G. Langdon, J. Wadsworth, Summary and topics of ICSAM-91, in: S. Hori, M. Tokizane, N. Furushiro (Eds. ), Superplasticity in Advanced Materials - ICSAM-91, The Japan Society for Research on Superplasticity, Osaka, Japan, 1991, pp.847-852.
DOI: 10.2320/materia.54.638
Google Scholar
[4]
D.A. Woodford, Strain-rate sensitivity as a measure of ductility, ASM Trans. Quart. 62 (1969) 291-293.
Google Scholar
[5]
T.G. Langdon, The relationship between strain rate sensitivity and ductility in superplastic materials, Scripta Metall. 11 (1977) 997-1000.
DOI: 10.1016/0036-9748(77)90254-x
Google Scholar
[6]
T.G. Langdon, The mechanical properties of superplastic materials, Metall. Trans. A 13A (1982) 689-701.
Google Scholar
[7]
F.A. Mohamed, M.M.I. Ahmed, T.G. Langdon, Factors influencing ductility in the superplastic Zn-22 pct Al eutectoid, Metall. Trans. A 8A (1977) 933-938.
DOI: 10.1007/bf02661575
Google Scholar
[8]
M.M.I. Ahmed, T.G. Langdon, Exceptional superplasticity in the Pb-62 pct Sn eutectic, Metall. Trans. A 8A (1977) 1832-1833.
DOI: 10.1007/bf02646892
Google Scholar
[9]
F.A. Mohamed, Creep ductility in large-grained solid solution alloys, Scripta Metall. 12 (1978) 99-102.
DOI: 10.1016/0036-9748(78)90237-5
Google Scholar
[10]
E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, J. Wadsworth, Warm-temperature tensile ductility in Al-Mg alloys, Metall. Mater. Trans. A 29A (1998) 1081-1091.
DOI: 10.1007/s11661-998-1017-x
Google Scholar
[11]
E.M. Taleff, D.R. Lesuer, J. Wadsworth, Enhanced ductility in coarse-grained Al-Mg alloys, Metall. Mater. Trans. A 27A (1996) 343-352.
DOI: 10.1007/bf02648411
Google Scholar
[12]
T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.
DOI: 10.1007/s10853-009-3780-5
Google Scholar
[13]
G.L. Dunlop, D.M.R. Taplin, The tensile properties of a superplastic aluminium bronze, J. Mater. Sci. 7 (1972) 84-92.
DOI: 10.1007/bf00549554
Google Scholar
[14]
G. Rai, N.J. Grant, On the measurements of superplasticity in an Al-Cu alloy, Metall. Trans. A 6A (1975) 385-390.
Google Scholar
[15]
M.L. Vaidya, K.L. Murty, J.E. Dorn, High-temperature deformation mechanisms in superplastic Zn-22Al eutectoid, Acta Metall. 21 (1973) 1615-1623.
DOI: 10.1016/0001-6160(73)90104-1
Google Scholar
[16]
H. Ishikawa, F.A. Mohamed, T.G. Langdon, The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid, Philos. Mag. 32 (1975) 1269-1271.
DOI: 10.1080/14786437508228105
Google Scholar
[17]
F.A. Mohamed, T.G. Langdon, Creep at low stress levels in the superplastic Zn-22% Al eutectoid, Acta Metall. 23 (1975) 117-124.
DOI: 10.1016/0001-6160(75)90076-0
Google Scholar
[18]
F.A. Mohamed, T.G. Langdon, Creep behaviour in the superplastic Pb-62% Sn eutectic, Philos. Mag. 32 (1975) 697-709.
DOI: 10.1080/14786437508221614
Google Scholar
[19]
T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.
DOI: 10.1016/0956-7151(94)90322-0
Google Scholar
[20]
T.G. Langdon, Superplasticity: an historical perspective, in: Superplasticity in Advanced Materials - ICSAM-91, S. Hori, M. Tokizane, N. Furushiro (Eds. ), The Japan Society for Research on Superplasticity, Osaka, Japan, 1991, pp.3-12.
DOI: 10.2320/materia.54.638
Google Scholar
[21]
E.E. Underwood, A review of superplasticity and related phenomena, J. Metals 14 (1962) 914-919.
Google Scholar
[22]
W.A. Backofen, L.R. Turner, D.H. Avery, Superplasticity in an Al-Zn alloy, Trans. ASM 57 (1964) 980-990.
Google Scholar
[23]
K. Higashi, T. Ohnishi, Y. Nakatani, Superplastic behavior of commercial aluminum bronze, Scripta Metall. 19 (1985) 821-823.
DOI: 10.1016/0036-9748(85)90199-1
Google Scholar
[24]
Y. Ma, T.G. Langdon, Factors influencing the exceptional ductility of a superplastic Pb-62 pct Sn alloy, Metall. Mater. Trans. A 25A (1994) 2309-2311.
DOI: 10.1007/bf02652333
Google Scholar
[25]
T.G. Langdon, Fracture processes in superplastic flow, Metal Sci. 16 (1982) 175-183.
Google Scholar
[26]
F.A. Mohamed, T.G. Langdon, Flow localization and neck formation in a superplastic metal, Acta Metall. 29 (1981) 911-920.
DOI: 10.1016/0001-6160(81)90133-4
Google Scholar
[27]
F. Wakai, S. Sakaguchi, Y. Matsuno, Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals, Adv. Ceram. Mater. 1 (1986) 259-263.
DOI: 10.1111/j.1551-2916.1986.tb00026.x
Google Scholar
[28]
K. Kajihara, Y. Yoshizawa, T. Sakuma, The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2 doping, Acta Metall. Mater. 43 (1995) 1235-1242.
DOI: 10.1016/0956-7151(94)00320-h
Google Scholar
[29]
M. Shirooyeh, R.P. Dillon, S.S. Sosa, P.H. Imamura. M.L. Mecartney, T.G. Langdon, Superplasticity and superplastic-like flow in cubic zirconia with silica, J. Mater. Sci. 50 (2015) 3716-3726.
DOI: 10.1007/s10853-015-8932-1
Google Scholar
[30]
S.M. Schmid, J.N. Boland, M.S. Paterson, Superplastic flow in finegrained limestone, Tectonophys. 43 (1977) 257-291.
DOI: 10.1016/0040-1951(77)90120-2
Google Scholar
[31]
M.S. Paterson, Superplasticity in geological materials, Mater. Res. Soc. Proc. 196 (1990) 303-312.
Google Scholar
[32]
S. Karato, S. Zhang, H.R. Wenk, Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics, Science 270 (1995) 458-461.
DOI: 10.1126/science.270.5235.458
Google Scholar
[33]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[34]
Y. Zhu, R.Z. Valiev, T.G. Langdon, N. Tsuji, K. Lu, Processing of nanostructured metals and alloys via plastic deformation, MRS Bull. 35 (2010) 977-981.
DOI: 10.1557/mrs2010.702
Google Scholar
[35]
R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[36]
A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[37]
S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy, Metall. Mater. Trans. A 32A (2001) 707-716.
DOI: 10.1007/s11661-001-1006-9
Google Scholar
[38]
A. Yamashita, Z. Horita, T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A300 (2001) 142-147.
DOI: 10.1016/s0921-5093(00)01660-9
Google Scholar
[39]
R.B. Figueiredo, T.G. Langdon, Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, J. Mater. Sci. 45 (2010) 4827-4836.
DOI: 10.1007/s10853-010-4589-y
Google Scholar
[40]
Z. Horita, K. Matsubara, K. Makii, T.G. Langdon, A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys, Scripta Mater. 47 (2002) 255-260.
DOI: 10.1016/s1359-6462(02)00135-5
Google Scholar
[41]
K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta Mater. 51 (2003) 3073-3084.
DOI: 10.1016/s1359-6454(03)00118-6
Google Scholar
[42]
M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP, Acta Mater. 55 (2007) 1083-1091.
DOI: 10.1016/j.actamat.2006.09.027
Google Scholar
[43]
R.B. Figueiredo, T.G. Langdon, Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing, Adv. Eng. Mater. 10 (2008) 37-40.
DOI: 10.1002/adem.200700315
Google Scholar
[44]
T.G. Langdon, An evaluation of the strain contributed in superplasticity, Mater. Sci. Eng. A174 (1994) 225-230.
Google Scholar
[45]
L.K.L. Falk, P.R. Howell, G.L. Dunlop, T.G. Langdon, The role of matrix dislocations in the superplastic deformation of a copper alloy, Acta Metall. 34 (1986) 1203-1214.
DOI: 10.1016/0001-6160(86)90007-6
Google Scholar
[46]
R.Z. Valiev, T.G. Langdon, An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy, Acta Metall. Mater. 41 (1993) 949-954.
DOI: 10.1016/0956-7151(93)90029-r
Google Scholar
[47]
Y. Xun, F.A. Mohamed, Slip-accommodated superplastic flow in Zn-22wt% Al, Philos. Mag. 83 (2003) 2247-2266.
DOI: 10.1080/1478643031000107230
Google Scholar
[48]
Y. Xun, F.A. Mohamed, Superplastic behavior of Zn-22% Al containing nano-scale dispersion particles, Acta Mater. 52 (2004) 4401-4412.
DOI: 10.1016/j.actamat.2004.03.039
Google Scholar
[49]
F.A. Mohamed, T.G. Langdon, Deformation mechanism maps for superplastic materials, Scripta Metall. 10 (1976) 759-762.
DOI: 10.1016/0036-9748(76)90358-6
Google Scholar
[50]
M. Kawasaki, N. Balasubramanian, T.G. Langdon, Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity, Mater. Sci. Eng. A528 (2010) 6624-6629.
DOI: 10.1016/j.msea.2011.05.005
Google Scholar
[51]
M. Kawasaki, T.G. Langdon, Review: Achieving superplasticity in metals processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 6487-6496.
DOI: 10.1007/s10853-014-8204-5
Google Scholar
[52]
K. Higashi, M. Mabuchi, T.G. Langdon, High-strain-rate superplasticity in metallic materials and the potential for ceramic materials, ISIJ Intl 36 (1996) 1423-1438.
DOI: 10.2355/isijinternational.36.1423
Google Scholar
[53]
R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, T.G. Langdon, Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes, Scripta Mater. 37 (1997) 1945-(1950).
DOI: 10.1016/s1359-6462(97)00387-4
Google Scholar
[54]
Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Superplastic forming at high strain rates after severe plastic deformation, Acta Mater. 48 (2000) 3633-3640.
DOI: 10.1016/s1359-6454(00)00182-8
Google Scholar
[55]
A.J. Barnes, Superplastic forming 40 years and still growing, J. Mater. Eng. Perform. 16 (2007) 440-454.
DOI: 10.1007/s11665-007-9076-5
Google Scholar