Forty-Five Years of Superplastic Research: Recent Developments and Future Prospects

Article Preview

Abstract:

Although superplasticity has a long history, dating back to the first laboratory-scale observations in 1934, the major new developments in superplasticity have occurred almost exclusively over the last four decades. Furthermore, this corresponds to the period associated with the ICSAM conferences which started with a first conference in San Diego, California, in June 1982 and has continued to ICSAM-2015 in Tokyo, Japan. Major developments over this time include the growth of a vibrant and effective superplastic forming industry and an extension of the concept of metallic superplasticity to include both ceramics and geological materials. This paper examines the significance of these developments and discusses future prospects and new opportunities within the field of superplastic research.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

3-12

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.G. Langdon, R.C. Gifkins, On the nature of superplastic deformation in the Mg-Al eutectic, Scripta Metall. 4 (1970) 337-340.

DOI: 10.1016/0036-9748(70)90096-7

Google Scholar

[2] C.E. Pearson, The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin, J. Inst. Metals 54 (1934) 111-123.

Google Scholar

[3] T.G. Langdon, J. Wadsworth, Summary and topics of ICSAM-91, in: S. Hori, M. Tokizane, N. Furushiro (Eds. ), Superplasticity in Advanced Materials - ICSAM-91, The Japan Society for Research on Superplasticity, Osaka, Japan, 1991, pp.847-852.

DOI: 10.2320/materia.54.638

Google Scholar

[4] D.A. Woodford, Strain-rate sensitivity as a measure of ductility, ASM Trans. Quart. 62 (1969) 291-293.

Google Scholar

[5] T.G. Langdon, The relationship between strain rate sensitivity and ductility in superplastic materials, Scripta Metall. 11 (1977) 997-1000.

DOI: 10.1016/0036-9748(77)90254-x

Google Scholar

[6] T.G. Langdon, The mechanical properties of superplastic materials, Metall. Trans. A 13A (1982) 689-701.

Google Scholar

[7] F.A. Mohamed, M.M.I. Ahmed, T.G. Langdon, Factors influencing ductility in the superplastic Zn-22 pct Al eutectoid, Metall. Trans. A 8A (1977) 933-938.

DOI: 10.1007/bf02661575

Google Scholar

[8] M.M.I. Ahmed, T.G. Langdon, Exceptional superplasticity in the Pb-62 pct Sn eutectic, Metall. Trans. A 8A (1977) 1832-1833.

DOI: 10.1007/bf02646892

Google Scholar

[9] F.A. Mohamed, Creep ductility in large-grained solid solution alloys, Scripta Metall. 12 (1978) 99-102.

DOI: 10.1016/0036-9748(78)90237-5

Google Scholar

[10] E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, J. Wadsworth, Warm-temperature tensile ductility in Al-Mg alloys, Metall. Mater. Trans. A 29A (1998) 1081-1091.

DOI: 10.1007/s11661-998-1017-x

Google Scholar

[11] E.M. Taleff, D.R. Lesuer, J. Wadsworth, Enhanced ductility in coarse-grained Al-Mg alloys, Metall. Mater. Trans. A 27A (1996) 343-352.

DOI: 10.1007/bf02648411

Google Scholar

[12] T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sci. 44 (2009) 5998-6010.

DOI: 10.1007/s10853-009-3780-5

Google Scholar

[13] G.L. Dunlop, D.M.R. Taplin, The tensile properties of a superplastic aluminium bronze, J. Mater. Sci. 7 (1972) 84-92.

DOI: 10.1007/bf00549554

Google Scholar

[14] G. Rai, N.J. Grant, On the measurements of superplasticity in an Al-Cu alloy, Metall. Trans. A 6A (1975) 385-390.

Google Scholar

[15] M.L. Vaidya, K.L. Murty, J.E. Dorn, High-temperature deformation mechanisms in superplastic Zn-22Al eutectoid, Acta Metall. 21 (1973) 1615-1623.

DOI: 10.1016/0001-6160(73)90104-1

Google Scholar

[16] H. Ishikawa, F.A. Mohamed, T.G. Langdon, The influence of strain rate on ductility in the superplastic Zn-22% Al eutectoid, Philos. Mag. 32 (1975) 1269-1271.

DOI: 10.1080/14786437508228105

Google Scholar

[17] F.A. Mohamed, T.G. Langdon, Creep at low stress levels in the superplastic Zn-22% Al eutectoid, Acta Metall. 23 (1975) 117-124.

DOI: 10.1016/0001-6160(75)90076-0

Google Scholar

[18] F.A. Mohamed, T.G. Langdon, Creep behaviour in the superplastic Pb-62% Sn eutectic, Philos. Mag. 32 (1975) 697-709.

DOI: 10.1080/14786437508221614

Google Scholar

[19] T.G. Langdon, A unified approach to grain boundary sliding in creep and superplasticity, Acta Metall. Mater. 42 (1994) 2437-2443.

DOI: 10.1016/0956-7151(94)90322-0

Google Scholar

[20] T.G. Langdon, Superplasticity: an historical perspective, in: Superplasticity in Advanced Materials - ICSAM-91, S. Hori, M. Tokizane, N. Furushiro (Eds. ), The Japan Society for Research on Superplasticity, Osaka, Japan, 1991, pp.3-12.

DOI: 10.2320/materia.54.638

Google Scholar

[21] E.E. Underwood, A review of superplasticity and related phenomena, J. Metals 14 (1962) 914-919.

Google Scholar

[22] W.A. Backofen, L.R. Turner, D.H. Avery, Superplasticity in an Al-Zn alloy, Trans. ASM 57 (1964) 980-990.

Google Scholar

[23] K. Higashi, T. Ohnishi, Y. Nakatani, Superplastic behavior of commercial aluminum bronze, Scripta Metall. 19 (1985) 821-823.

DOI: 10.1016/0036-9748(85)90199-1

Google Scholar

[24] Y. Ma, T.G. Langdon, Factors influencing the exceptional ductility of a superplastic Pb-62 pct Sn alloy, Metall. Mater. Trans. A 25A (1994) 2309-2311.

DOI: 10.1007/bf02652333

Google Scholar

[25] T.G. Langdon, Fracture processes in superplastic flow, Metal Sci. 16 (1982) 175-183.

Google Scholar

[26] F.A. Mohamed, T.G. Langdon, Flow localization and neck formation in a superplastic metal, Acta Metall. 29 (1981) 911-920.

DOI: 10.1016/0001-6160(81)90133-4

Google Scholar

[27] F. Wakai, S. Sakaguchi, Y. Matsuno, Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals, Adv. Ceram. Mater. 1 (1986) 259-263.

DOI: 10.1111/j.1551-2916.1986.tb00026.x

Google Scholar

[28] K. Kajihara, Y. Yoshizawa, T. Sakuma, The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2 doping, Acta Metall. Mater. 43 (1995) 1235-1242.

DOI: 10.1016/0956-7151(94)00320-h

Google Scholar

[29] M. Shirooyeh, R.P. Dillon, S.S. Sosa, P.H. Imamura. M.L. Mecartney, T.G. Langdon, Superplasticity and superplastic-like flow in cubic zirconia with silica, J. Mater. Sci. 50 (2015) 3716-3726.

DOI: 10.1007/s10853-015-8932-1

Google Scholar

[30] S.M. Schmid, J.N. Boland, M.S. Paterson, Superplastic flow in finegrained limestone, Tectonophys. 43 (1977) 257-291.

DOI: 10.1016/0040-1951(77)90120-2

Google Scholar

[31] M.S. Paterson, Superplasticity in geological materials, Mater. Res. Soc. Proc. 196 (1990) 303-312.

Google Scholar

[32] S. Karato, S. Zhang, H.R. Wenk, Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics, Science 270 (1995) 458-461.

DOI: 10.1126/science.270.5235.458

Google Scholar

[33] T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035-7059.

DOI: 10.1016/j.actamat.2013.08.018

Google Scholar

[34] Y. Zhu, R.Z. Valiev, T.G. Langdon, N. Tsuji, K. Lu, Processing of nanostructured metals and alloys via plastic deformation, MRS Bull. 35 (2010) 977-981.

DOI: 10.1557/mrs2010.702

Google Scholar

[35] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[36] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893-979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[37] S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, An evaluation of the flow behavior during high strain rate superplasticity in an Al-Mg-Sc alloy, Metall. Mater. Trans. A 32A (2001) 707-716.

DOI: 10.1007/s11661-001-1006-9

Google Scholar

[38] A. Yamashita, Z. Horita, T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Mater. Sci. Eng. A300 (2001) 142-147.

DOI: 10.1016/s0921-5093(00)01660-9

Google Scholar

[39] R.B. Figueiredo, T.G. Langdon, Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, J. Mater. Sci. 45 (2010) 4827-4836.

DOI: 10.1007/s10853-010-4589-y

Google Scholar

[40] Z. Horita, K. Matsubara, K. Makii, T.G. Langdon, A two-step processing route for achieving a superplastic forming capability in dilute magnesium alloys, Scripta Mater. 47 (2002) 255-260.

DOI: 10.1016/s1359-6462(02)00135-5

Google Scholar

[41] K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta Mater. 51 (2003) 3073-3084.

DOI: 10.1016/s1359-6454(03)00118-6

Google Scholar

[42] M. Furui, H. Kitamura, H. Anada, T.G. Langdon, Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP, Acta Mater. 55 (2007) 1083-1091.

DOI: 10.1016/j.actamat.2006.09.027

Google Scholar

[43] R.B. Figueiredo, T.G. Langdon, Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing, Adv. Eng. Mater. 10 (2008) 37-40.

DOI: 10.1002/adem.200700315

Google Scholar

[44] T.G. Langdon, An evaluation of the strain contributed in superplasticity, Mater. Sci. Eng. A174 (1994) 225-230.

Google Scholar

[45] L.K.L. Falk, P.R. Howell, G.L. Dunlop, T.G. Langdon, The role of matrix dislocations in the superplastic deformation of a copper alloy, Acta Metall. 34 (1986) 1203-1214.

DOI: 10.1016/0001-6160(86)90007-6

Google Scholar

[46] R.Z. Valiev, T.G. Langdon, An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy, Acta Metall. Mater. 41 (1993) 949-954.

DOI: 10.1016/0956-7151(93)90029-r

Google Scholar

[47] Y. Xun, F.A. Mohamed, Slip-accommodated superplastic flow in Zn-22wt% Al, Philos. Mag. 83 (2003) 2247-2266.

DOI: 10.1080/1478643031000107230

Google Scholar

[48] Y. Xun, F.A. Mohamed, Superplastic behavior of Zn-22% Al containing nano-scale dispersion particles, Acta Mater. 52 (2004) 4401-4412.

DOI: 10.1016/j.actamat.2004.03.039

Google Scholar

[49] F.A. Mohamed, T.G. Langdon, Deformation mechanism maps for superplastic materials, Scripta Metall. 10 (1976) 759-762.

DOI: 10.1016/0036-9748(76)90358-6

Google Scholar

[50] M. Kawasaki, N. Balasubramanian, T.G. Langdon, Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity, Mater. Sci. Eng. A528 (2010) 6624-6629.

DOI: 10.1016/j.msea.2011.05.005

Google Scholar

[51] M. Kawasaki, T.G. Langdon, Review: Achieving superplasticity in metals processed by high-pressure torsion, J. Mater. Sci. 49 (2014) 6487-6496.

DOI: 10.1007/s10853-014-8204-5

Google Scholar

[52] K. Higashi, M. Mabuchi, T.G. Langdon, High-strain-rate superplasticity in metallic materials and the potential for ceramic materials, ISIJ Intl 36 (1996) 1423-1438.

DOI: 10.2355/isijinternational.36.1423

Google Scholar

[53] R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, T.G. Langdon, Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes, Scripta Mater. 37 (1997) 1945-(1950).

DOI: 10.1016/s1359-6462(97)00387-4

Google Scholar

[54] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Superplastic forming at high strain rates after severe plastic deformation, Acta Mater. 48 (2000) 3633-3640.

DOI: 10.1016/s1359-6454(00)00182-8

Google Scholar

[55] A.J. Barnes, Superplastic forming 40 years and still growing, J. Mater. Eng. Perform. 16 (2007) 440-454.

DOI: 10.1007/s11665-007-9076-5

Google Scholar