[1]
C.E. Pearson, The viscous properties of extruded eutectic alloys of lead-tin and bismuth tin, J. Inst. Metals 54 (1934) 111-123.
Google Scholar
[2]
A.V. Mikhaylovskaya, A.D. Kotov, A.V. Pozdniakov, V.K. Portnoy, A high strength aluminium based alloy with advanced superplasticity, J. All. Comp. 599 (2014) 139-144.
DOI: 10.1016/j.jallcom.2014.02.061
Google Scholar
[3]
A.V. Mikhaylovskaya, O.A. Yakovtseva, I.S. Golovin, A.V. Pozdniakov, V.K. Portnoy, Superplastic deformation mechanisms in fine grained Al-Mg based alloys, Mater. Sc. Eng. A627 (2015) 31-41.
DOI: 10.1016/j.msea.2014.12.099
Google Scholar
[4]
Q. Yang, B.L. Xiao, Q. Zhang, M.Y. Zheng, Z.Y. Ma, Exceptional high strain rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long period stacking ordered phase, Scripta Mater. 69 (2013) 801-804.
DOI: 10.1016/j.scriptamat.2013.09.001
Google Scholar
[5]
F. Cao, H. Ding, H. Hou, C. Yu, Y. Li, A novel superplastic mechanism based constitutive equation and its application in an ultralight two-phase hypereutectic Mg-8. 42Li alloy, Mater. Sc. Eng. A596 (2014) 250-254.
DOI: 10.1016/j.msea.2013.12.020
Google Scholar
[6]
Z.L. Zhao, H.Z. Guo, T. Wang, Z.K. Yao, Enhanced superplasticity of ultra-fine grained Ti-17 powder compact prepared through HIP/IF, J. All. Comp. 577 (2013) 152-157.
DOI: 10.1016/j.jallcom.2013.04.173
Google Scholar
[7]
Q.J. Sun, G.C. Wang, Microstructure and superplasticity of TA15 alloy, Mater. Sc. Eng. A606 (2014) 401-408.
Google Scholar
[8]
S. Li, X. Ren, X. Ji, Y. Gui, Effects of microstructure changes on the superplasticity of 2205 duplex stainless steel, Mater. Design 55 (2014) 146-151.
DOI: 10.1016/j.matdes.2013.09.042
Google Scholar
[9]
H. Zhang, D. Ponge, D. Raabe, Superplastic Mn-Si-Cr-C duplex and triplex steels: interaction of microstructure and void formation, Mater. Sc. Eng. A610 (2014) 355-369.
DOI: 10.1016/j.msea.2014.05.061
Google Scholar
[10]
H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, P. Choi, C.C. Tasan, D. Raabe, Enhanced superplasticity in an Al alloyed multicomponent Mn-Si-Cr steel, Acta Mater. 63 (2014) 232-244.
DOI: 10.1016/j.actamat.2013.10.034
Google Scholar
[11]
M. Kawasaki, T.G. Langdon, Review: achieving superplasticity in metals processed by high pressure torsion, J. Mater. Sc. 49 (2014) 6487-6496.
DOI: 10.1007/s10853-014-8204-5
Google Scholar
[12]
M. Kawasaki, T.G. Langdon, Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation, Mater. Trans. 49 (2008) 84-89.
DOI: 10.2320/matertrans.me200720
Google Scholar
[13]
T.G. Langdon, Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement, Acta Mater. 61 (2013) 7035.
DOI: 10.1016/j.actamat.2013.08.018
Google Scholar
[14]
R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach, Metal. Mater. Trans. 45 (2014) 698-708.
DOI: 10.1007/s11661-013-2017-z
Google Scholar
[15]
J.S. Kim, J.H. Kim, Y.T. Lee, C.G. Park, C.S. Lee, Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy, Mater. Sc. Eng. A263 (1999) 272-280.
DOI: 10.1016/s0921-5093(98)01157-5
Google Scholar
[16]
N. Du, Y. Qi, P.E. Krajewski, A.F. Bower, The effect of solute atoms on aluminum grain boundary sliding at elevated temperature, Metall. Mater. Trans. 42A (2011) 651-659.
DOI: 10.1007/s11661-010-0326-z
Google Scholar
[17]
N. Du, Y. Qi, P.E. Krajewski, A.F. Bower, The Effect of Solute Atoms on Aluminum Grain Boundary Sliding at Elevated Temperature, Metall. Mater. Trans. 42A (2011) 651-659.
DOI: 10.1007/s11661-010-0326-z
Google Scholar
[18]
K. Duong, F. A. Mohamed, Effect of Impurity Content on Boundary Sliding Behavior in Zn-22% Al, Acta Mater. 46 (1998) 4571-4586.
DOI: 10.1016/s1359-6454(98)00128-1
Google Scholar
[19]
T.G. Langdon, Seventy-five years of superplasticity: historic developments and new opportunities, J. Mater. Sc. 44 (2009) 5998-6010.
DOI: 10.1007/s10853-009-3780-5
Google Scholar
[20]
H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa, K. Threshold stress for superplasticity in solid solution magnesium alloys, Phil. Mag. 92 (2012) 787-803.
DOI: 10.1080/14786435.2011.634849
Google Scholar
[21]
K. Sotoudeh, P.S. Bate, Diffusion creep and superplasticity in aluminium alloys, Acta Mater. 58 (2010) 1909-(1920).
DOI: 10.1016/j.actamat.2009.11.034
Google Scholar
[22]
K. Sotoudeh, N. Ridley, F.J. Humphreys, P.S. Bate, Superplasticity and microstructural evolution in aluminium alloys, Mat-wiss. U. Werkstofftech. 43 (2012) 794-798.
DOI: 10.1002/mawe.201200044
Google Scholar
[23]
M.A. Rust, R.I. Todd, High resolution surface studies of superplastic deformation in shear and tension, Mat-wiss. U. Werkstofftech. 39 (2008) 289-292.
DOI: 10.1002/mawe.200800291
Google Scholar
[24]
M.A. Rust, R.I. Todd, Surface studies of region II superplasticity of AA5083 in shear: confirmation of diffusion creep, grain neighbor switching and absence of dislocation activity, Acta Mater. 59 (2011) 5159-5170.
DOI: 10.1016/j.actamat.2011.04.051
Google Scholar
[25]
T.J. Lee, Y.B. Park, W.J. Kim, Importance of diffusion creep in fine grained Mg-3Al-1Zn alloys, Mater. Sc. Eng. A580 (2013) 133.
DOI: 10.1016/j.msea.2013.04.061
Google Scholar
[26]
W.J. Kim, I.B. Park, Enhanced superplasticity and diffusional creep in ultrafine grained Mg-6Al-1Zn alloy with high thermal stability, Scripta Mater. 68 (2013) 179-182.
DOI: 10.1016/j.scriptamat.2012.10.011
Google Scholar
[27]
W.J. Kim, T.J. Lee, Two different types of deformation behaviors in ultrafine grained Mg alloys at high temperatures and development of the generalized constitutive equation for describing their deformation behavior, Mater. Sc. Eng. A613 (2014).
DOI: 10.1016/j.msea.2014.06.096
Google Scholar
[28]
F. Spaepen, Must shear bands be hot , Nature 5 (2006) 7.
Google Scholar
[29]
B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, Y. Sakka, Y.J. Park, Grain boundary sliding model, of pore shrinkage in late intermediate sintering stage under hydrostatic pressure, Grain-boundary sliding model of pore shrinkage in late intermediate sintering stage under hydrostatic pressureGrain-boundary sliding model of pore shrinkage in late intermediate sintering stage under hydrostatic pressureGrain-boundary sliding model of pore shrinkage in late intermediate sintering stage under hydrostatic pressureActa Mater. 61 (2013).
DOI: 10.1016/j.actamat.2013.07.014
Google Scholar
[30]
T. Zhang, Y. Liu, D.G. Sanders, B. Liu, W. Zhang, C. Zhou, Development of fine grain size titanium 6Al64V alloy sheet material for low temperature superplastic forming, Mater. Sc. Eng. A608 (2014) 265-272.
DOI: 10.1016/j.msea.2014.04.098
Google Scholar
[31]
D. Zhang, S. Wang, C. Qiu, W. Zhang, Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing, Mater. Sc. Eng. A 556 (2012) 100-106.
DOI: 10.1016/j.msea.2012.06.063
Google Scholar
[32]
Y.L. Duan, G.F. Xu, D. Xiao, L.Q. Zhou, Y. Deng, Z.M. Yin, et al., Excellent superplasticity and deformation mechanism of Al–Mg–Sc–Zr alloy processed via simple free forging, Mater. Sc. Eng. A624 (2015) 124-131.
DOI: 10.1016/j.msea.2014.11.054
Google Scholar
[33]
Meiers, M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Progress in Materials Science 51 (2006) 427-556.
DOI: 10.1016/j.pmatsci.2005.08.003
Google Scholar
[34]
R.Z. Valiev, T.G. Langdon, Achieving exceptional grain refinement through severe plastic deformation: new approaches for improving the processing technology, Metall. Mater. Trans 42A (2011) 2942-2951.
DOI: 10.1007/s11661-010-0556-0
Google Scholar
[35]
R.B. Figueiredo, T.G. Langdon, Evaluating the superplastic flow of a magnesium AZ31 alloy processed by equal channel angular pressing, Metall. Mater. Trans. 45A (2014) 3197-3204.
DOI: 10.1007/s11661-013-1920-7
Google Scholar
[36]
A. Loucif, R.B. Figueiredo, M. Kawasaki, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Effect of aging on microstructure development in an Al-Mg-Si alloy processed by high pressure torsion, J. Mater. Sc. 47 (2012) 7815-7820.
DOI: 10.1007/s10853-012-6400-8
Google Scholar
[37]
M. Kawasaki, Different models of hardness evolution in ultrafine grained materials processed by high pressure torsion, J. Mater. Sc. 49 (2014) 18-34.
DOI: 10.1007/s10853-013-7687-9
Google Scholar
[38]
S.S. Babu, J. Livingston, J.C. Lippold, Physical simulation of deformation and microstructure evolution during friction stir processing of Ti-6Al-4V alloy, Metall. Mater. Trans. 44A (2013) 3577-3591.
DOI: 10.1007/s11661-013-1782-z
Google Scholar
[39]
F.C. Liu, Z.Y. Ma, Superplasticity governed by effective grain size and its distribution in fine grained aluminum alloys, Mater. Sc. Eng. A530 (2011) 548-558.
DOI: 10.1016/j.msea.2011.10.018
Google Scholar
[40]
R.B. Figueiredo, T.G. Langdon, Record superplasticity in a magnesium alloy processed by equal-channel angular pressing, Adv. Eng. Mater. 10 (2008) 37-40.
DOI: 10.1002/adem.200700315
Google Scholar
[41]
A. Mussi, J.J. Blandin, L. Salvo, E.F. Rauch, Resistance to strain induced damage of an ultrafine grained magnesium alloy deformed in superplastic conditions, Acta Mater. 54 (2006) 3801-3809.
DOI: 10.1016/j.actamat.2006.04.011
Google Scholar
[42]
M.J. Stowell, J.L. Robertson, B.M. Watts, Structural Changes during Superplastic Deformation of the Al–Cu Eutectic Alloy, Met. Sc. J. 3 (1969) 41-45.
DOI: 10.1179/msc.1969.3.1.41
Google Scholar
[43]
R. Dashwood, D. Klaumunzer, M. Jackson, Z. Fan, R. Grimes, The development of superplastic magnesium alloy sheet, Key Engineering Materials (2010) 273-279.
DOI: 10.4028/www.scientific.net/kem.433.273
Google Scholar
[44]
V. Janik, G. Bali, R. Grimes, R. Dashwood, Superplastic forming ability of as-cast AZ91 Mg alloy prepared by twin roll casting, Mat-wiss. U. Werkstofftech. 45 (2014) 815-8 21.
DOI: 10.1002/mawe.201400286
Google Scholar
[45]
D. G. Sanders. M. Ramulu, P.D. Edwards, and A. Cantrell, "Effect on the Surface texture, superplastic forming and fatigue performance of titanium 6Al-4V friction stir welds, J. Mater. Eng. Perf. 19 (2010) 503-509.
DOI: 10.1007/s11665-010-9614-4
Google Scholar
[46]
L.H. Wu, B.L. Xiao, D.R. Ni, Z.Y. Ma, X.H. Li, M.J. Fu, Y.S. Zeng, Achieving superior superplasticity from lamellar microstructure of a nugget in a friction stir welded Ti-6Al-4V joint, Scripta Mater. 98 (2015) 44-47.
DOI: 10.1016/j.scriptamat.2014.11.011
Google Scholar
[47]
E.M. Taleff., P.J. Nevland, P.E. Krajewski, Tensile ductility of several commercial aluminum alloys at elevated temperatures, Metall. Mater. Trans., 32A (2001) 1119-1130.
DOI: 10.1007/s11661-001-0123-9
Google Scholar
[48]
M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Deformation mechanisms in superplastic AA5083 materials, Metall. Mater. Trans., 36A (2005) 1249-1261.
DOI: 10.1007/s11661-005-0217-x
Google Scholar
[49]
M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, T.R. McNelley, Failure mechanisms in superplastic AA5083 materials, Metall. Mater. Trans., 37A (2006) 645-655.
DOI: 10.1007/s11661-006-0036-8
Google Scholar
[50]
W. Guofeng, S. Chao, L. Shufen, Y. Mo, Research on quick superplastic forming technology of aluminum alloy complex components, Mat-wiss. U. Werkstofftech. 45 (2014) 854-859.
DOI: 10.1002/mawe.201400294
Google Scholar
[51]
F. Spigarelli, O.A. Ruano, M. El Mehtedi, J.A. Del Valle, High temperature deformation and microstructural instability in AZ31 magnesium alloy, Mater. Sc. Eng. A570 (2013) 135-148.
DOI: 10.1016/j.msea.2013.01.060
Google Scholar
[52]
P. Lhuissier, A. Villanueva, L. Salvo J.J. Blandin, THERMEC 2011, 1-5 August 2011, Québec (Canada), Materials Science Forum, 706-709 (2012) 1128.
DOI: 10.4028/www.scientific.net/msf.706-709.1128
Google Scholar
[53]
X.G. Jiang, J.C. Earthman, F.A. Mohamed, Cavitation and cavity-induced fracture during superplastic deformation, J. Mater. Sc. 29 (1994) 5499-5514.
DOI: 10.1007/bf00349941
Google Scholar
[54]
H. Toda, Z.A.B. Shamsudin, K. Shimizu, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Nakazawa, Y. Aoki, M. Kobayashi, Cavitation during high-temperature deformation in Al–Mg alloys, Acta Materialia 61 (2013) 2403].
DOI: 10.1016/j.actamat.2013.01.012
Google Scholar
[55]
A. Needleman, J. R. Rice, Plastic creep flow effects in the diffusive cavitation of grain boundaries, Acta Metall. 28 (1980) 1315-1332.
DOI: 10.1016/0001-6160(80)90001-2
Google Scholar
[56]
A.H. Chokshi, Cavity nucleation and growth in superplasticity, Mater. Sc. Eng. 410-411 (2005) 95-99.
Google Scholar
[57]
M.R.R. Panicker, A.H. Chokshi, Influence of grain size on high temperature fracture in a Mg AZ31 alloy, Mater. Sc. Eng. A528 (2011) 3031-3036.
DOI: 10.1016/j.msea.2010.12.076
Google Scholar
[58]
J. Ragani, P. Donnadieu, C. Tassin, J.J. Blandin, High temperature deformation of the gamma-Mg17Al12 complex metallic alloy, Scripta Mater. 65 (2011) 253-256.
DOI: 10.1016/j.scriptamat.2011.04.022
Google Scholar
[59]
H.M.M. A Rashed, J.D. Robson, P.S. Bate, B. Davis, Application of X-ray microtomography to analysis of cavitation in AZ61 magnesium alloy during hot deformation, Mater. Sc. Eng. A528 (2011) 2610-2619.
DOI: 10.1016/j.msea.2010.11.083
Google Scholar
[60]
P. Lhuissier, M. Scheel, L. Salvo, M. Di Michiel, J.J. Blandin, Continuous characterization by X-ray microtomography of damage during high temperature deformation of magnesium alloy, Scripta Mater. 69 (2013) 85-88.
DOI: 10.1016/j.scriptamat.2013.03.001
Google Scholar