First Principles Study of the Structural and Magnetic Properties of Cr-Doped Ni1.75Co0.25Mn1.5In0.5 Heusler Alloys

Article Preview

Abstract:

In this work, the structural and magnetic properties of Cr – doped Ni1.75Co0.25Mn1.5In0.5 Heusler alloys are investigated by using the density functional theory calculations. The chemical disorder is treated by the 16-atom supercell approach. Three compositions with substitution of 6.25 %, 12.5 %, and 18.75% Cr for Mn are taken into consideration. The formation energy, magnetic moments and lattice parameters depending on the Cr content are found. It is shown that compositions with 6.25% and 12.5% of Cr are energetically stable in austenite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-141

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Das, S. Sarma, A. Perumal, A. Srinivasan, Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy, J. Appl. Phys. 109 (2011) 07A901-4.

DOI: 10.1063/1.3540327

Google Scholar

[2] D.Y. Cong, S. Roth, L. Schultz, Magnetic properties and structural transformations in NiCoMnSn multifunctional alloys, Acta Mater. 60 (2012) 5335-5351.

DOI: 10.1016/j.actamat.2012.06.034

Google Scholar

[3] O.O. Pavlukhina, V.V. Sokolovskiy, V.D. Buchelnikov, Monte Carlo study of the polycrystalline Ni2MnGa Heusler alloy, Solid State Phenomena. 233-234 (2015) 251-254.

DOI: 10.4028/www.scientific.net/ssp.233-234.251

Google Scholar

[4] S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, F. Albertini, Co and In Doped Ni-Mn-Ga Magnetic Shape Memory Alloys: A Thorough Structural, Magnetic and Magnetocaloric Study, Entropy 16 (2014) 2204-2222.

DOI: 10.3390/e16042204

Google Scholar

[5] J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nature Mater. 11 (2012) 620-626.

DOI: 10.1038/nmat3334

Google Scholar

[6] V.K. Sharma, M.K. Chattopadhyay, L.S. Sharath Chandra, and S.B. Roy, Elevating the temperature regime of the large magnetocaloric effect in a NiMnIn alloy towards room temperature, J. Phys. D: Appl. Phys. 44 (2011) 145002-5.

DOI: 10.1088/0022-3727/44/14/145002

Google Scholar

[7] V. S´anchez-Alarcos, V. Recarte, J.I. P´erez-Landaz´abal, J.R. Chapelon, J.A. Rodr´ıguez-Velamaz´an, Structural and magnetic properties of Cr-doped NiMnIn metamagnetic shape memory alloys, J. Phys. D: Appl. Phys. 44 (2011) 395001-7.

DOI: 10.1088/0022-3727/44/39/395001

Google Scholar

[8] Quantum ESPRESSO package, Version 5. 0. http: /www. pwscf. org.

Google Scholar

[9] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[10] J. Bai, J. M. Raulot, Y. D. Zhang, C. Esling, X. Zhao, and L. Zuo, Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, Co) from first-principles calculations, J. Appl. Phys. 109 (2011).

DOI: 10.1063/1.3524488

Google Scholar

[11] V.D. Buchelnikov, V.V. Sokolovskiy, M.A. Zagrebin, M.A. Tufatullina, and P. Entel, First principles investigation of structural and magnetic properties of Ni–Co–Mn–In Heusler alloys, J. Phys. D.: Appl. Phys. 48 (2015) 164005-8.

DOI: 10.1088/0022-3727/48/16/164005

Google Scholar