Simulation of Control System for Shape Memory Nanotweezers

Article Preview

Abstract:

Thermoelastic martensitic phase transition in Ni-Ti based shape memory alloys enables designing micro- and nanotools that are controlled by small changes in temperature (~10°С). This makes it feasible creating a new generation of complex microrobotical systems for manipulation and treatment of various nanoobjects in nanoindustry, medicine, nanoelectronics, etc. This work deals with the development of a physical and mathematical model for the micro manipulation system. The system under investigation pertains to shape memory composite nanotweezers with the composition Ti2NiCu/Pt located at the tip of a tungsten microneedle. The activation and control of the nanotweezers is done by heating them by the passage of an electric current flowing through a microdiode located in the needle. The microdiode serves the twin purpose of Joule heating and temperature sensing/measurement so as to close the feedback loop of the control system. The prototype of the control system was manufactured and tested. The data from the simulation were compared with those from the preliminary experiments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-145

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Junno, S.B. Carlsson, H. Xu, L. Montelius and L. Samuelson. Fabrication of quantum devices by Angstrom-level manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 72 (1998) 548–50.

DOI: 10.1063/1.120754

Google Scholar

[2] K. Mougin, E. Gnecco, A. Rao, M.T. Cuberes, S. Jayaraman, E.W. McFarland, H. Haidara and E. Meyer. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir 24 (2008).

DOI: 10.1021/la702921v

Google Scholar

[3] B. Chen, Y. Zhang, D. Perovic, Yu. Sun. MEMS microgrippers with thin gripping tips. J. Micromech. Microeng. 21 (2011) 105004.

DOI: 10.1088/0960-1317/21/10/105004

Google Scholar

[4] P. Kim and C.M. Lieber Nanotube nanotweezers. Science 286 (1999) 2148–50.

Google Scholar

[5] S. Akita, Y. Nakayama, S. Mizooka, Y. Takano, T. Okawa, Y. Miyatake, S. Yamanaka and M. Tsuji. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl. Phys. Lett. 79 (2001) 1691–93.

DOI: 10.1063/1.1403275

Google Scholar

[6] P. Boggild, T.M. Hansen, C. Tanasa and F. Grey. Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology. 12 (2001) 331–35.

DOI: 10.1088/0957-4484/12/3/322

Google Scholar

[7] J. Chang, B. -K. Min, J. Kim, S. -J. Lee and L. Lin. Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 18 (2009) 065017.

DOI: 10.1088/0964-1726/18/6/065017

Google Scholar

[8] A. Cagliani, R. Wierzbicki, L. Occhipinti. Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J. Micromech. Microeng. 20 (2010) 035009.

DOI: 10.1088/0960-1317/20/3/035009

Google Scholar

[9] H. Zhao, M. Chang, X. Liu. Design and implementation of shape memory alloy-actuated nanotweezers for nanoassembly. J. Micromech. Microeng. 24 (2014) 095012.

DOI: 10.1088/0960-1317/24/9/095012

Google Scholar

[10] P. Lega, V. Koledov, D. Kuchin. Simulation of the control process applied to the micromechanical device with the shape memory effect. J. Commun. Technol. Electron. 60 (10) (2015) 1124-1133.

DOI: 10.1134/s1064226915100083

Google Scholar

[11] A.V. Irzhak, V.S. Kalashnikov, V.V. Koledov, D.S. Kuchin, G.A. Lebedev, P.V. Lega, N.A. Pikhtin, I.S. Tarasov, V.G. Shavrov, A.V. Shelyakov. Giant reversible deformations in a shape-memory composite material. Tech. Phys. Lett. 36 (4) (2010).

DOI: 10.1134/s1063785010040127

Google Scholar

[12] A.V. Shelyakov, N.N. Sitnikov, V.V. Koledov, D.S. Kuchin, A.I. Irzhak, N. Yu. Tabachkova. Melt-spun thin ribbons of shape memory TiNiCu alloy for micromechanical applications. Int. J. Smart and Nano Materials, 2 (2) (2011) 68-77.

DOI: 10.1080/19475411.2011.567305

Google Scholar

[13] D. Zakharov, G. Lebedev, A. Irzhak, V. Afonina, A. Mashirov, V. Kalashnikov, V. Koledov, A. Shelyakov, D. Podgorny, N. Tabachkova, V. Shavrov. Submicron-sized actuators based on enhanced shape memory composite material fabricated by FIB-CVD. Smart Mater. Struct., 21 (5) (2012).

DOI: 10.1088/0964-1726/21/5/052001

Google Scholar

[14] A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, V.V. Koledov, A.I. Irjak. Nanostructured thin ribbons of a shape memory Ti2NiCu alloy. Thin Solid Films Source of the DocumentThin Solid Films., 519 (15) (2011) 5314-5317.

DOI: 10.1016/j.tsf.2011.01.118

Google Scholar