[1]
T. Junno, S.B. Carlsson, H. Xu, L. Montelius and L. Samuelson. Fabrication of quantum devices by Angstrom-level manipulation of nanoparticles with an atomic force microscope. Appl. Phys. Lett. 72 (1998) 548–50.
DOI: 10.1063/1.120754
Google Scholar
[2]
K. Mougin, E. Gnecco, A. Rao, M.T. Cuberes, S. Jayaraman, E.W. McFarland, H. Haidara and E. Meyer. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir 24 (2008).
DOI: 10.1021/la702921v
Google Scholar
[3]
B. Chen, Y. Zhang, D. Perovic, Yu. Sun. MEMS microgrippers with thin gripping tips. J. Micromech. Microeng. 21 (2011) 105004.
DOI: 10.1088/0960-1317/21/10/105004
Google Scholar
[4]
P. Kim and C.M. Lieber Nanotube nanotweezers. Science 286 (1999) 2148–50.
Google Scholar
[5]
S. Akita, Y. Nakayama, S. Mizooka, Y. Takano, T. Okawa, Y. Miyatake, S. Yamanaka and M. Tsuji. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl. Phys. Lett. 79 (2001) 1691–93.
DOI: 10.1063/1.1403275
Google Scholar
[6]
P. Boggild, T.M. Hansen, C. Tanasa and F. Grey. Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology. 12 (2001) 331–35.
DOI: 10.1088/0957-4484/12/3/322
Google Scholar
[7]
J. Chang, B. -K. Min, J. Kim, S. -J. Lee and L. Lin. Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 18 (2009) 065017.
DOI: 10.1088/0964-1726/18/6/065017
Google Scholar
[8]
A. Cagliani, R. Wierzbicki, L. Occhipinti. Manipulation and in situ transmission electron microscope characterization of sub-100 nm nanostructures using a microfabricated nanogripper. J. Micromech. Microeng. 20 (2010) 035009.
DOI: 10.1088/0960-1317/20/3/035009
Google Scholar
[9]
H. Zhao, M. Chang, X. Liu. Design and implementation of shape memory alloy-actuated nanotweezers for nanoassembly. J. Micromech. Microeng. 24 (2014) 095012.
DOI: 10.1088/0960-1317/24/9/095012
Google Scholar
[10]
P. Lega, V. Koledov, D. Kuchin. Simulation of the control process applied to the micromechanical device with the shape memory effect. J. Commun. Technol. Electron. 60 (10) (2015) 1124-1133.
DOI: 10.1134/s1064226915100083
Google Scholar
[11]
A.V. Irzhak, V.S. Kalashnikov, V.V. Koledov, D.S. Kuchin, G.A. Lebedev, P.V. Lega, N.A. Pikhtin, I.S. Tarasov, V.G. Shavrov, A.V. Shelyakov. Giant reversible deformations in a shape-memory composite material. Tech. Phys. Lett. 36 (4) (2010).
DOI: 10.1134/s1063785010040127
Google Scholar
[12]
A.V. Shelyakov, N.N. Sitnikov, V.V. Koledov, D.S. Kuchin, A.I. Irzhak, N. Yu. Tabachkova. Melt-spun thin ribbons of shape memory TiNiCu alloy for micromechanical applications. Int. J. Smart and Nano Materials, 2 (2) (2011) 68-77.
DOI: 10.1080/19475411.2011.567305
Google Scholar
[13]
D. Zakharov, G. Lebedev, A. Irzhak, V. Afonina, A. Mashirov, V. Kalashnikov, V. Koledov, A. Shelyakov, D. Podgorny, N. Tabachkova, V. Shavrov. Submicron-sized actuators based on enhanced shape memory composite material fabricated by FIB-CVD. Smart Mater. Struct., 21 (5) (2012).
DOI: 10.1088/0964-1726/21/5/052001
Google Scholar
[14]
A.V. Shelyakov, N.N. Sitnikov, A.P. Menushenkov, V.V. Koledov, A.I. Irjak. Nanostructured thin ribbons of a shape memory Ti2NiCu alloy. Thin Solid Films Source of the DocumentThin Solid Films., 519 (15) (2011) 5314-5317.
DOI: 10.1016/j.tsf.2011.01.118
Google Scholar