[1]
P.I. Plotnikov, V.N. Starovoytov, Stefan problem with surface tension as the limit of the phasefield model, Differential Equations, 29, 3 (1993) 395-404.
Google Scholar
[2]
P.I. Plotnikov, A.V. Klepacheva, Phase-field equations and gradient flows of marginal functions, Siberian Mathematical Journal, 42, 3 (2001) 551-567.
DOI: 10.1023/a:1010431411758
Google Scholar
[3]
M.V. Plekhanova, V.E. Fedorov, An optimal control problem for a class of degenerate equations, J. Comput. Syst. Sci. Int., 43, 5 (2004) 698-702.
Google Scholar
[4]
M.V. Plekhanova, V.E. Fedorov, An optimality criterion in a control problem for of Sobolev-type linear equations, J. Comput. Syst. Sci. Int., 46, 2 (2007) 248-254.
DOI: 10.1134/s1064230707020116
Google Scholar
[5]
V.E. Fedorov, M.V. Plekhanova, The problem of start control for a class of semilinear distributed systems of Sobolev type, Proceedings of the Steklov Institute of Mathematics, 17, 1 (2011) 259- 267.
DOI: 10.1134/s0081543811090033
Google Scholar
[6]
M.V. Plekhanova, A.F. Islamova, Solvability of mixed-type optimal control problems for distributed systems, Russian Mathematics, 55, 7 (2011) 30-39.
DOI: 10.3103/s1066369x1107005x
Google Scholar
[7]
M.V. Plekhanova, A.F. Islamova, Problems with a robust mixed control for the linearized Bussinesq equation, Differential Equations, 48, 4, (2012) 574-585.
DOI: 10.1134/s0012266112040118
Google Scholar
[8]
A. Favini, A. Yagi, Degenerate Diferential Equations in Banach Spaces, Marcel Dekker, New York, (1999).
Google Scholar
[9]
G.V. Demidenko, S.V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, New York, Basel, Marcel Dekker, (2003).
DOI: 10.1201/9780203911433
Google Scholar
[10]
A.G. Sveshnikov, A.B. Alshin, M.O. Korpusov, Yu.D. Pletner, Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, Moscow, 2007. [in Russian].
DOI: 10.1142/9789812702067_0168
Google Scholar
[11]
V.E. Fedorov, Degenerate strongly continuous semigroups of operators, St. Petersburg Mathematical Journal, 12, 3 (2001) 471-489.
Google Scholar
[12]
V.E. Fedorov, N.D. Ivanova, Nelokal'naja po vremeni kraevaja zadacha dlja linearizovannoj sistemy uravnenij fazovogo polja (Time nonlocal boundary value problem for a linearized phase field equations system), Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Serija: Matematika. Mehanika. Fizika, 7, 3 (2015).
Google Scholar