The Suitability of Rice Straw Ash as a Precursor for Synthesizing β-Wollastonite

Article Preview

Abstract:

In this study, β-wollastonite is produced from a reaction between silica (SiO2) and calcium oxide (CaO) with the SiO2/Cao ratio of 55:45. Rice straw ash is chosen as the source for SiO2 instead of rice husk ash because the straw can yield up to 85% of silica even though this percentage is lower than those silica yielded from rice husk ash. It is found that period of autoclaving and sintering play an important role in producing the wollastonite. As shown in the XRD results, a single phase β-wollastonite is obtained after 8 h of autoclaving and 3 h of sintering at 950 °C. The produced β-wollastonite phase also shows a good crystallinity but needs longer sintering time compared with wollastonite produced using rice husk ash. DTA graph shows a chemical reaction between silica and calcium oxide started to occur at 788.3°C. IR spectroscopic analysis data confirm that the IR peaks at 681, 894 and 931 cm-1 are due to the β-Wollastonite phase. Form the results obtained, it can be concluded that rice straw ash is comparable to rice husk ash as a precursor in producing β-Wollastonite material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-222

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. A. Abdel-Mohdy, E. S. Abdel-Halim, Y. M. Abu-Ayana, and S. M. El-Sawy, Rice straw as a new resource for some beneficial uses, Carbohydr. Polym., vol. 75, no. 1, p.44–51, Jan. (2009).

DOI: 10.1016/j.carbpol.2008.06.002

Google Scholar

[2] R. Khandanlou, M. Bin Ahmad, K. Shameli, and K. Kalantari, Synthesis and characterization of rice straw/Fe3O4 nanocomposites by a quick precipitation method., Molecules, vol. 18, no. 6, p.6597–607, Jan. (2013).

DOI: 10.3390/molecules18066597

Google Scholar

[3] P. J. Van Soest, Rice straw, the role of silica and treatments to improve quality, Anim. Feed Sci. Technol., vol. 130, no. 3–4, p.137–171, Nov. (2006).

DOI: 10.1016/j.anifeedsci.2006.01.023

Google Scholar

[4] R. Sun, J. Tomkinson, F. C. Mao, and X. F. Sun, Physicochemical characterization of lignins from rice straw by hydrogen peroxide treatment, J. Appl. Polym. Sci., vol. 79, no. 4, p.719–732, Jan. (2001).

DOI: 10.1002/1097-4628(20010124)79:4<719::aid-app170>3.0.co;2-3

Google Scholar

[5] K. L. Kadam, L. H. Forrest, and W. A. Jacobson, Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects, Biomass and Bioenergy, vol. 18, no. 5, p.369–389, May (2000).

DOI: 10.1016/s0961-9534(00)00005-2

Google Scholar

[6] M. Magallanes-perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, Bone-like forming ability of apatite – wollastonite glass ceramic, J. Eur. Ceram. Soc., vol. 31, no. 9, p.1549–1561, (2011).

DOI: 10.1016/j.jeurceramsoc.2011.03.007

Google Scholar

[7] X. Liu, C. Ding, and P. K. Chu, Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials, vol. 25, no. 10, p.1755–1761, May (2004).

DOI: 10.1016/j.biomaterials.2003.08.024

Google Scholar

[8] L. Zhao and J. Chang, Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering., J. Mater. Sci. Mater. Med., vol. 15, no. 5, p.625–9, May (2004).

DOI: 10.1023/b:jmsm.0000026103.44687.d0

Google Scholar

[9] P. Kalla, A. Misra, R. C. Gupta, L. Csetenyi, V. Gahlot, and A. Arora, Mechanical and durability studies on concrete containing wollastonite–fly ash combination, Constr. Build. Mater., vol. 40, p.1142–1150, Mar. (2013).

DOI: 10.1016/j.conbuildmat.2012.09.102

Google Scholar

[10] S. Ke, X. Cheng, Y. Wang, Q. Wang, and H. Wang, Dolomite, wollastonite and calcite as different CaO sources in anorthite-based porcelain, Ceram. Int., vol. 39, no. 5, p.4953–4960, Dec. (2013).

DOI: 10.1016/j.ceramint.2012.11.091

Google Scholar

[11] M. Felipe-Sesé, D. Eliche-Quesada, and F. a. Corpas-Iglesias, The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials, Ceram. Int., vol. 37, no. 8, p.3019–3028, Dec. (2011).

DOI: 10.1016/j.ceramint.2011.05.003

Google Scholar

[12] X. -H. Huang and J. Chang, Synthesis of nanocrystalline wollastonite powders by citrate–nitrate gel combustion method, Mater. Chem. Phys., vol. 115, no. 1, p.1–4, May (2009).

DOI: 10.1016/j.matchemphys.2008.11.066

Google Scholar

[13] X. Wan, C. Chang, D. Mao, L. Jiang, and M. Li, Preparation and in vitro bioactivities of calcium silicate nanophase materials, Mater. Sci. Eng. C, vol. 25, no. 4, p.455–461, Jun. (2005).

DOI: 10.1016/j.msec.2004.12.003

Google Scholar

[14] L. Z. Pei, L. J. Yang, Y. Yang, C. G. Fan, W. Y. Yin, J. Chen, and Q. F. Zhang, A green and facile route to synthesize calcium silicate nanowires, Mater. Charact., vol. 61, no. 11, p.1281–1285, Nov. (2010).

DOI: 10.1016/j.matchar.2010.07.002

Google Scholar

[15] F. Tamimi, D. Le Nihouannen, H. Eimar, Z. Sheikh, S. Komarova, and J. Barralet, The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: brushite vs. monetite., Acta Biomater., vol. 8, no. 8, p.3161–9, Aug. (2012).

DOI: 10.1016/j.actbio.2012.04.025

Google Scholar

[16] H. Ismail, R. Shamsudin, M. A. Abdul Hamid, and A. Jalar, Synthesis and Characterization of Nano-Wollastonite from Rice Husk Ash and Limestone, Mater. Sci. Forum, vol. 756, p.43–47, May (2013).

DOI: 10.4028/www.scientific.net/msf.756.43

Google Scholar

[17] D. S. Klimesch and A. Ray, The use of DTA / TGA to study the effects of ground quartz with different surface areas in autoclaved cement : quartz pastes . Use of the semi-isothermal thermogravimetric technique, Thermochim. Acta, vol. 306, p.159–165, (1997).

DOI: 10.1016/s0040-6031(97)00279-7

Google Scholar

[18] D. S. Klimesch and A. Ray, The use of DTA / TGA to study the effects of ground quartz with different surface areas in autoclaved cement ' quartz pastes . Part 1 ' A method for evaluating DTA / TGA results, Thermochim. Acta, vol. 289, p.41–54, (1996).

DOI: 10.1016/s0040-6031(96)03033-x

Google Scholar

[19] R. Abd Rashid, R. Shamsudin, M. A. Abdul Hamid, and A. Jalar. 2014. In-vitro bioactivity of wollastonite materials derived from limestone and silica sand, Ceram. Int., 40; 6847–6853.

DOI: 10.1016/j.ceramint.2013.12.004

Google Scholar

[20] R. P. Sreekanth Chakradhar, B. M. Nagabhushana, G. T. Chandrappa, K. P. Ramesh, and J. L. Rao, Solution combustion derived nanocrystalline macroporous wollastonite ceramics, Mater. Chem. Phys., vol. 95, no. 1, p.169–175, Jan. (2006).

DOI: 10.1016/j.matchemphys.2005.06.002

Google Scholar

[21] C. Paluszkiewicz, M. Blażewicz, J. Podporska, and T. Gumuła, Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies, Vib. Spectrosc., vol. 48, no. 2, p.263–268, Nov. (2008).

DOI: 10.1016/j.vibspec.2008.02.020

Google Scholar

[22] P. Kolhe and R. M. Kannan. 2003. Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions, Biomacromolecules, 4; 173–180.

DOI: 10.1021/bm025689+

Google Scholar