Electrical Impedance Spectroscopy and Fourier Transform Infrared Studies of New Binary Li2CO3-LiI Solid Electrolyte

Article Preview

Abstract:

Low ionic conductivity and easily attacked by air are among the common issues of lithium salts in lithium based solid electrolytes. Toward this end, our efforts have been focused on the development of a new lithium based electrolyte system which exhibits a good stability against atmosphere and posses high electrical conductivity. Normally, lithium carbonate (Li2CO3) alone shows a low electrical conductivity (2×10-5 Scm-1). However, the corporation of lithium iodide (LiI) has made a significant impact on the electrical conductivity of the system (4.63×10-3 Scm-1). The xLi2CO3-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte were prepared by mechanical milling technique. The electrical and structural properties of the electrolyte systems were characterized by Electrical Impedance Spectroscopy (EIS) and Fourier Transform Infrared (FTIR) respectively. The highest electrical conductivity (4.6×10-3 Scm-1) of the electrolyte system was obtained from the sample containing 20 wt.% of lithium iodide (LiI). The carbonate groups play a role to provide sites for the interaction between interconnected pathways and lithium ions for the fast lithium ion migration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

517-522

Citation:

Online since:

March 2016

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Hu, Z. Zhang, and K. Amine, Electrochemical investigation of carbonate-based electrolytes for high voltage lithium-ion cells, Journal of Power Sources, 236 (2013) 175-180.

DOI: 10.1016/j.jpowsour.2013.02.064

Google Scholar

[2] P. Masset, A. Henry, J. Y. Poinso, and J. C. Poignet, Ionic conductivity measurements of molten iodide-based electrolytes, Journal of power sources, 160 (1) (2006) 752-757.

DOI: 10.1016/j.jpowsour.2006.01.014

Google Scholar

[3] K. I. Chung, J. D. Lee, E. J. Kim, J. H. Cho, and Y. K. Choi, Studies on the effects of coated Li2CO3 on lithium electrode, Microchemical Journal, 75 (2003) 71-77.

DOI: 10.1016/s0026-265x(03)00026-2

Google Scholar

[4] A. Gupta, M. Ramaswamy, M. P. Paranthaman, C. A. Bridges, M. Nakanishi, A. P. Sokolov, K. S. Han, E. W. Hagaman, H. Xie, C. B. Mullins and J. B. Goodenough, Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO, Journal of Power Sources, 209 (12) (2012).

DOI: 10.1016/j.jpowsour.2012.02.099

Google Scholar

[5] T. K. Han, R. Ahmad, and M. R. Johan, Phase, thermal and impedance studies of nanosize Li2WO4 via mechanical milling and sintering, Superlattices and Microstructures, 49 (2011) 17-31.

DOI: 10.1016/j.spmi.2010.10.003

Google Scholar

[6] S. M. M. Yasin, S. Ibrahim, and M. R. Johan, Effect of zirconium oxide nanofiller and dibutyl phthalate plasticizer on ionic conductivity and optical properties of solid polymer electrolyte, The Scientific World Journal, (2014) 547076.

DOI: 10.1155/2014/547076

Google Scholar

[7] C. S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, and P. C. Angelo, Investigation on dielectric relaxations of PVP-NH4SCN polymer electrolyte, Journal of Non-Crystalline Solids, 354 (14) (2008) 1494–1502.

DOI: 10.1016/j.jnoncrysol.2007.08.038

Google Scholar

[8] N. H. Kaus and A. H. Ahmad, Conductivity Studies and Ion Transport Mechanism in LiI-Li3PO4 Solid Electrolyte, Journal of Ionics, 15 (2009) 197-201.

DOI: 10.1007/s11581-008-0252-x

Google Scholar

[9] C. K. Huang and P. F. Kerr, Infrared Study of Carbonate Minerals. The American Mineralogist, 45 (1960).

Google Scholar

[10] M. H. Khanmirzaei and S. Ramesh, Ionic Transport and FTIR Properties of Lithium Iodide Doped Biodegradable Rice Starch Based Polymer Electrolytes. Int. J. Electrochem. Sci., 8 (2013) 9977-9991.

DOI: 10.1016/s1452-3981(23)13026-4

Google Scholar

[11] L. N. Sim, S. R. Majid, and A. K. Arof, FTIR studies of PEMA/PVDF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt, Vibrational Spectroscopy, 58 (2012) 57-66.

DOI: 10.1016/j.vibspec.2011.11.005

Google Scholar

[12] S. Ramesh and M. F. Chai, Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes, Material Science and Engineering, 139 (2007) 240-245.

DOI: 10.1016/j.mseb.2007.03.003

Google Scholar