Density Functional Study of Electronic and Optical Properties of Ternary Mixed Chalcogenides Topological Insulators

Article Preview

Abstract:

This paper presented a theoretical study of structural, electronic, and optical properties of the ternary mixed chalcogenides Topological Insulators with a formula M2X2Y (M = Bi, X = Te and Y= Se, S) using density functional theory (DFT) within the local density approximation (LDA). From the calculation, we have evaluated the bulk modulus and its corresponding pressure derivatives of these compounds. The linear photon-energy dependent of dielectric functions, some optical properties such as reflectivity, refraction index, conductivity function, and energy-loss spectra, have also been obtained and analyzed within the electronic band structures and density of states of these compounds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-606

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Y. Lin, Z. K. Liu, J. G. Analytis, J Chu, H. J. Zhang, B. H. Yan, S-K. Mo Single, Dirac cone topological surface state and unusual thermo-electric property of compounds from a new topological insulator family, Physical review letters. 105 (2010).

DOI: 10.1103/physrevlett.105.266401

Google Scholar

[2] T. Hao, D. Liang, R. LJ Qiu, and X. P. A Gao, Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons, Acs Nano. 5 (2011) 7510-7516.

DOI: 10.1021/nn2024607

Google Scholar

[3] N. M, S-Y. Xu, L. A. Wray, A. Petersen, R. Shankar, N. Alidoust, C. Liu, Topological surface states and Dirac point tuning in ternary topological insulators, Physical Review B. 85 (2012) 235406.

DOI: 10.1103/physrevb.85.235406

Google Scholar

[4] Z. Yangon, Y. Hu, L. Liu, Y. Zhu, and H. Guo, Helical states of topological insulator Bi2Se3, Nano letters. 11 (2011) 2088-(2091).

DOI: 10.1021/nl200584f

Google Scholar

[5] Z. Yi, K He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nature Physics. 6 (2010) 584-588.

DOI: 10.1038/nphys1689

Google Scholar

[6] H. D, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3, Physical review letters. 103 (2009) 146401.

Google Scholar

[7] D. Y. J, R. Z. Wang, and L. Ni, Experimental investigation on a thermo-electric refrigerator driven by solar cells, Renewable energy. 28 (2003) 949-959.

DOI: 10.1016/s0960-1481(02)00055-1

Google Scholar

[8] T. Y. M, W. Fan, K. M. Chua, Peter ZF Shi, and C. K. Wong, Fabrication of thermo-electric cooler for device integration,  Electronic Packaging Technology Conference, 2005. EPTC 200, Proceedings of 7th IEEE. (2005).

DOI: 10.1109/eptc.2005.1614508

Google Scholar

[9] L. W. P, and C. C. Lee, Bonding of Bi2Te3 chips to alumina using Ag-In system for high temperature applications,  Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st IEEE. (2011).

DOI: 10.1109/ectc.2011.5898501

Google Scholar

[10] Z. Parisa, A. Hayat, S. Y. F. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3,  Nature communications. 3 (2012) 1056.

DOI: 10.1038/ncomms2042

Google Scholar

[11] C. Jiwon, L. F. Register, S. K. Banerjee, and B. Sahu, Density functional study of ternary topological insulator thin films,  Physical Review B. 83 (2011) 235108.

DOI: 10.1103/physrevb.83.235108

Google Scholar

[12] K. Kenta, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E. E. Krasovskii, Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3, Physical review letters. 105 (2010) 076802.

DOI: 10.1103/physrevlett.105.076802

Google Scholar

[13] A. David, D. Loss, and N. Samarth, Semiconductor spintronics and quantum computation, Springer, UK, (2002).

Google Scholar

[14] E. H. Andreas, P. Recher, and D. Loss, Electron spins in quantum dots for spintronics and quantum computation, Solid state communications. 119 (2001) 229-236.

DOI: 10.1016/s0038-1098(01)00110-7

Google Scholar

[15] W. L. Lin, and D. D. Johnson, Ternary tetradymite compounds as topological insulators,  Physical Review B. 83 (2011) 241309.

Google Scholar

[16] K. Walter, A. D. Becke, and R. G. Parr, Density functional theory of electronic structure, The Journal of Physical Chemistry. 100 (1996) 12974-12980.

DOI: 10.1021/jp960669l

Google Scholar

[17] G. Paolo, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli. QUANTUM ESPRESSO a modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21 (2009) 395502.

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[18] A. A. Ahmed, and A. Dal Corso, Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules, Journal of Physics Condensed Matter. 23 (2011) 425501.

DOI: 10.1088/0953-8984/23/42/425501

Google Scholar

[19] H. John D., and M. C. Zerner, A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries, Chemical physics letters. 122 (1985) 264-270.

DOI: 10.1016/0009-2614(85)80574-1

Google Scholar

[20] S. S. Yu, Linear-response theory and lattice dynamics: A muffin-tin-orbital approach, Physical Review B. 54 (1996): 16470.

DOI: 10.1103/physrevb.54.16470

Google Scholar

[21] Dal Corso Andrea, Density functional perturbation theory for lattice dynamics, Lecture notes Cork, 2010 (2010).

Google Scholar

[22] B. Stefano, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics 73 (2001) 515.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[23] Tyuterev, V. G, and N. Vast, Murnaghan's equation of state for the electronic ground state energy, Computational materials science. 38 (2006) 350-353.

DOI: 10.1016/j.commatsci.2005.08.012

Google Scholar

[24] J. J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals, Physical Review. 112 (1958) 1555.

DOI: 10.1103/physrev.112.1555

Google Scholar

[25] R. Daniel, and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications, Springer, UK, (2000).

Google Scholar

[26] S. Nakajima, The crystal structure of Bi 2 Te 3− x Se x. Journal of Physics and Chemistry of Solids 24 (1963) 479-485.

Google Scholar

[27] Wyckoff, Ralph Walter Graystone, and Ralph WG Wyckoff. Crystal structures. Vol. 1. New York: Interscience, (1960).

Google Scholar

[28] Marini, A., Hogan, C., Grüning, M., & Varsano, D. Yambo: an ab initio tool for excited state calculations. Computer Physics Communications, 180 (2009) 1392-1403.

DOI: 10.1016/j.cpc.2009.02.003

Google Scholar