[1]
C. Y. Lin, Z. K. Liu, J. G. Analytis, J Chu, H. J. Zhang, B. H. Yan, S-K. Mo Single, Dirac cone topological surface state and unusual thermo-electric property of compounds from a new topological insulator family, Physical review letters. 105 (2010).
DOI: 10.1103/physrevlett.105.266401
Google Scholar
[2]
T. Hao, D. Liang, R. LJ Qiu, and X. P. A Gao, Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons, Acs Nano. 5 (2011) 7510-7516.
DOI: 10.1021/nn2024607
Google Scholar
[3]
N. M, S-Y. Xu, L. A. Wray, A. Petersen, R. Shankar, N. Alidoust, C. Liu, Topological surface states and Dirac point tuning in ternary topological insulators, Physical Review B. 85 (2012) 235406.
DOI: 10.1103/physrevb.85.235406
Google Scholar
[4]
Z. Yangon, Y. Hu, L. Liu, Y. Zhu, and H. Guo, Helical states of topological insulator Bi2Se3, Nano letters. 11 (2011) 2088-(2091).
DOI: 10.1021/nl200584f
Google Scholar
[5]
Z. Yi, K He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit, Nature Physics. 6 (2010) 584-588.
DOI: 10.1038/nphys1689
Google Scholar
[6]
H. D, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3, Physical review letters. 103 (2009) 146401.
Google Scholar
[7]
D. Y. J, R. Z. Wang, and L. Ni, Experimental investigation on a thermo-electric refrigerator driven by solar cells, Renewable energy. 28 (2003) 949-959.
DOI: 10.1016/s0960-1481(02)00055-1
Google Scholar
[8]
T. Y. M, W. Fan, K. M. Chua, Peter ZF Shi, and C. K. Wong, Fabrication of thermo-electric cooler for device integration, Electronic Packaging Technology Conference, 2005. EPTC 200, Proceedings of 7th IEEE. (2005).
DOI: 10.1109/eptc.2005.1614508
Google Scholar
[9]
L. W. P, and C. C. Lee, Bonding of Bi2Te3 chips to alumina using Ag-In system for high temperature applications, Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st IEEE. (2011).
DOI: 10.1109/ectc.2011.5898501
Google Scholar
[10]
Z. Parisa, A. Hayat, S. Y. F. Zhao, M. Kreshchuk, A. Jain, D. C. Kwok, N. Lee, Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3, Nature communications. 3 (2012) 1056.
DOI: 10.1038/ncomms2042
Google Scholar
[11]
C. Jiwon, L. F. Register, S. K. Banerjee, and B. Sahu, Density functional study of ternary topological insulator thin films, Physical Review B. 83 (2011) 235108.
DOI: 10.1103/physrevb.83.235108
Google Scholar
[12]
K. Kenta, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E. E. Krasovskii, Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3, Physical review letters. 105 (2010) 076802.
DOI: 10.1103/physrevlett.105.076802
Google Scholar
[13]
A. David, D. Loss, and N. Samarth, Semiconductor spintronics and quantum computation, Springer, UK, (2002).
Google Scholar
[14]
E. H. Andreas, P. Recher, and D. Loss, Electron spins in quantum dots for spintronics and quantum computation, Solid state communications. 119 (2001) 229-236.
DOI: 10.1016/s0038-1098(01)00110-7
Google Scholar
[15]
W. L. Lin, and D. D. Johnson, Ternary tetradymite compounds as topological insulators, Physical Review B. 83 (2011) 241309.
Google Scholar
[16]
K. Walter, A. D. Becke, and R. G. Parr, Density functional theory of electronic structure, The Journal of Physical Chemistry. 100 (1996) 12974-12980.
DOI: 10.1021/jp960669l
Google Scholar
[17]
G. Paolo, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli. QUANTUM ESPRESSO a modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21 (2009) 395502.
DOI: 10.1088/0953-8984/21/39/395502
Google Scholar
[18]
A. A. Ahmed, and A. Dal Corso, Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules, Journal of Physics Condensed Matter. 23 (2011) 425501.
DOI: 10.1088/0953-8984/23/42/425501
Google Scholar
[19]
H. John D., and M. C. Zerner, A Broyden-Fletcher-Goldfarb-Shanno optimization procedure for molecular geometries, Chemical physics letters. 122 (1985) 264-270.
DOI: 10.1016/0009-2614(85)80574-1
Google Scholar
[20]
S. S. Yu, Linear-response theory and lattice dynamics: A muffin-tin-orbital approach, Physical Review B. 54 (1996): 16470.
DOI: 10.1103/physrevb.54.16470
Google Scholar
[21]
Dal Corso Andrea, Density functional perturbation theory for lattice dynamics, Lecture notes Cork, 2010 (2010).
Google Scholar
[22]
B. Stefano, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Reviews of Modern Physics 73 (2001) 515.
DOI: 10.1103/revmodphys.73.515
Google Scholar
[23]
Tyuterev, V. G, and N. Vast, Murnaghan's equation of state for the electronic ground state energy, Computational materials science. 38 (2006) 350-353.
DOI: 10.1016/j.commatsci.2005.08.012
Google Scholar
[24]
J. J. Hopfield, Theory of the contribution of excitons to the complex dielectric constant of crystals, Physical Review. 112 (1958) 1555.
DOI: 10.1103/physrev.112.1555
Google Scholar
[25]
R. Daniel, and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-Optic Interaction, Applications, Springer, UK, (2000).
Google Scholar
[26]
S. Nakajima, The crystal structure of Bi 2 Te 3− x Se x. Journal of Physics and Chemistry of Solids 24 (1963) 479-485.
Google Scholar
[27]
Wyckoff, Ralph Walter Graystone, and Ralph WG Wyckoff. Crystal structures. Vol. 1. New York: Interscience, (1960).
Google Scholar
[28]
Marini, A., Hogan, C., Grüning, M., & Varsano, D. Yambo: an ab initio tool for excited state calculations. Computer Physics Communications, 180 (2009) 1392-1403.
DOI: 10.1016/j.cpc.2009.02.003
Google Scholar