[1]
J. Wu, When group-III nitrides go infrared: New properties and perspectives, J. Appl. Phys. 106 (2009) 011101.
Google Scholar
[2]
J. D. Beach, H. Al-Thani, S. McCray, R. T. Collins, and J. A. Turner, Band gaps and lattice parameters of 0. 9 mm thick InxGa1-xN films for 0 ≤ x≤ 0. 140, J. Appl. Phys. 91 (2002) 5190-5194.
DOI: 10.1063/1.1462851
Google Scholar
[3]
S. Valdueza-Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. González-Posada, J. Eymery, and E. Monroy, Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells, Jpn. J. Appl. Phys. 52 (2013).
DOI: 10.7567/jjap.52.08jh05
Google Scholar
[4]
A. Khan, K. Balakrishnan, and T. Katona, Ultraviolet light-emitting diodes based on group three nitrides, Nat. Photonics 2 (2008) 77-84.
DOI: 10.1038/nphoton.2007.293
Google Scholar
[5]
B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Thermoelectric properties of InxGa1− xN alloys, Appl. Phys. Lett. 92 (2008) 042112.
DOI: 10.1063/1.2839309
Google Scholar
[6]
V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys, Phys. Status Solidi B 240 (2003).
DOI: 10.1002/pssb.200303448
Google Scholar
[7]
R. Oliva, J. Ibáñez, R. Cuscó, R. Kudrawiec, J. Serafinczuk, O. Martínez, J. Jiménez, M. Henini, C. Boney, A. Bensaoula, and L. Artús, Raman scattering by the E2h and A1(LO) phonons of InxGa1− xN epilayers (0. 25< x< 0. 75) grown by molecular beam epitaxy, J. Appl. Phys. 111 (2012).
DOI: 10.1063/1.3693579
Google Scholar
[8]
S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O'Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, Raman-scattering study of the InGaN alloy over the whole composition range, J. Appl. Phys. 98 (2005) 013511.
DOI: 10.1063/1.1940139
Google Scholar
[9]
M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, Raman study of the A1(LO) phonon in relaxed and pseudomorphic InGaN epilayers, Appl. Phys. Lett. 83 (2003) 4761-4763.
DOI: 10.1063/1.1627941
Google Scholar
[10]
J. W. Ager III, W. Walukiewicz, W. Shan, K. M. Yu, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, Multiphonon resonance Raman scattering in InxGa1− xN, Phys. Rev. B 72 (2005) 155204.
Google Scholar
[11]
A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Micro-Raman characterization of InxGa1−xN/GaN∕Al2O3 heterostructures, Phys. Rev. B 72 (2005) 155336.
Google Scholar
[12]
A. Kasic, M. Schubert, J. Off, B. Kuhn, F. Scholz, S. Einfeldt, T. Böttcher, D. Hommel, D. J. As, U. Köhler, A. Dadgar, A. Krost, Y. Saito, Y. Nanishi, M. R. Correia, S. Pereira, V. Darakchieva, B. Monemar, H. Amano, I. Akasaki, and G. Wagner, Phonons and free-carrier properties of binary, ternary, and quaternary group-III nitride layers measured by infrared spectroscopic ellipsometry, Phys. Status Solidi C 0 (2003).
DOI: 10.1002/pssc.200303135
Google Scholar
[13]
T. R. Yang, M. M. Dvoynenko, Y. F. Cheng, and Z. C. Feng, Far-IR investigation of thin InGaN layers, Physica B 324 (2002) 268-278.
DOI: 10.1016/s0921-4526(02)01412-6
Google Scholar
[14]
H. Grille, C. Schnittler, and F. Bechstedt, Phonons in ternary group-III nitride alloys, Phys. Rev. B 61 (2000) 6091-6105.
DOI: 10.1103/physrevb.61.6091
Google Scholar
[15]
S. Yu, K. W. Kim, L. Bergman, M. Dutta, M. A. Stroscio, and J. M. Zavada, Long-wavelength optical phonons in ternary nitride-based crystals, Phys. Rev. B 58 (1998) 15283-15287.
DOI: 10.1103/physrevb.58.15283
Google Scholar
[16]
F. Gervais and B. Piriou, Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity, J. Phys. C 7 (1974) 2374-2386.
DOI: 10.1088/0022-3719/7/13/017
Google Scholar
[17]
R. Kroon, The classical oscillator model and dielectric constants extracted from infrared reflectivity measurements, Infrared Phys. Technol. 51 (2007) 31-43.
DOI: 10.1016/j.infrared.2007.02.002
Google Scholar
[18]
D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, Raman scattering from the vibrational modes in Zn1-xMnxTe, Phys. Rev. B 33 (1986) 1160-1165.
Google Scholar
[19]
T. Yang, S. Goto, M. Kawata, K. Uchida, A. Niwa, and J. Gotoh, Optical properties of GaN thin films on sapphire substrates characterized by variable-angle spectroscopic ellipsometry, Jpn. J. Appl. Phys. 37 (1998) L1105-L1108.
DOI: 10.1143/jjap.37.l1105
Google Scholar
[20]
B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, Transient electron transport in wurtzite GaN, InN, and AlN, J. Appl Phys. 85 (1999) 7727-7734.
DOI: 10.1063/1.370577
Google Scholar
[21]
V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Phys. Rev. B 58 (1998).
DOI: 10.1103/physrevb.58.12899
Google Scholar
[22]
V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, Experimental and theoretical studies of phonons in hexagonal InN, Appl. Phys. Lett. 75 (1999).
DOI: 10.1063/1.125330
Google Scholar
[23]
M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, Rep. Prog. Phys. 72 (2009) 036502.
DOI: 10.1088/0034-4885/72/3/036502
Google Scholar
[24]
S. Gökden, R. Tülek, A. Teke, J. H. Leach, Q. Fan, J. Xie, Ü. Özgür, H. Morkoç, S. B. Lisesivdin, and E. Özbay, Mobility limiting scattering mechanisms in nitride-based two-dimensional heterostructures with the InGaN channel, Semicond. Sci. Technol. 25 (2010).
DOI: 10.1088/0268-1242/25/4/045024
Google Scholar
[25]
S. P. Fu and Y. F. Chen, Effective mass of InN epilayers, Appl. Phys. Lett. 85 (2004) 1523-1525.
DOI: 10.1063/1.1787615
Google Scholar
[26]
Y. Ishitani, X. Wang, S. -B. Che, and A. Yoshikawa, Effect of electron distribution in InN films on infrared reflectance spectrum of longitudinal optical phonon-plasmon interaction region, J. Appl. Phys. 103 (2008) 053515.
DOI: 10.1063/1.2875918
Google Scholar
[27]
M. Schubert, T. E. Tiwald, and C. M. Herzinger, Infrared dielectric anisotropy and phonon modes of sapphire, Phys. Rev. B 61 (2000) 8187-8201.
DOI: 10.1103/physrevb.61.8187
Google Scholar
[28]
A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, and G. Wagner, Effective electron mass and phonon modes in n-type hexagonal InN, Phys. Rev. B 65 (2002) 115206.
DOI: 10.1103/physrevb.65.115206
Google Scholar