Polarized Infrared Reststrahlen Features of Wurtzite InGaN Thin Film

Article Preview

Abstract:

Polarized infrared (IR) reflectance measurement was carried out to investigate the optical phonon modes of wurtzite structure In0.92Ga0.08N thin film grown by molecular beam epitaxy. Composition dependence of IR reststrahlen features was observed. Theoretical polarized IR reflectance spectrum was simulated using the standard multilayer optics technique with a multi-oscillator dielectric function model. By obtaining the best fit of experimental and theoretical spectrum, the Brillouin zone center E1 optical phonon modes together with the dielectric constant, layer thickness, free carriers concentration and mobility were extracted non-destructively. The extracted E1 optical phonon modes were compared with those generated from modified random element isodisplacement (MREI) model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

614-619

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wu, When group-III nitrides go infrared: New properties and perspectives, J. Appl. Phys. 106 (2009) 011101.

Google Scholar

[2] J. D. Beach, H. Al-Thani, S. McCray, R. T. Collins, and J. A. Turner, Band gaps and lattice parameters of 0. 9 mm thick InxGa1-xN films for 0 ≤ x≤ 0. 140, J. Appl. Phys. 91 (2002) 5190-5194.

DOI: 10.1063/1.1462851

Google Scholar

[3] S. Valdueza-Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. González-Posada, J. Eymery, and E. Monroy, Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells, Jpn. J. Appl. Phys. 52 (2013).

DOI: 10.7567/jjap.52.08jh05

Google Scholar

[4] A. Khan, K. Balakrishnan, and T. Katona, Ultraviolet light-emitting diodes based on group three nitrides, Nat. Photonics 2 (2008) 77-84.

DOI: 10.1038/nphoton.2007.293

Google Scholar

[5] B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Thermoelectric properties of InxGa1− xN alloys, Appl. Phys. Lett. 92 (2008) 042112.

DOI: 10.1063/1.2839309

Google Scholar

[6] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, and A. Yamamoto, Photoluminescence and Raman study of hexagonal InN and In-rich InGaN alloys, Phys. Status Solidi B 240 (2003).

DOI: 10.1002/pssb.200303448

Google Scholar

[7] R. Oliva, J. Ibáñez, R. Cuscó, R. Kudrawiec, J. Serafinczuk, O. Martínez, J. Jiménez, M. Henini, C. Boney, A. Bensaoula, and L. Artús, Raman scattering by the E2h and A1(LO) phonons of InxGa1− xN epilayers (0. 25< x< 0. 75) grown by molecular beam epitaxy, J. Appl. Phys. 111 (2012).

DOI: 10.1063/1.3693579

Google Scholar

[8] S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O'Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, Raman-scattering study of the InGaN alloy over the whole composition range, J. Appl. Phys. 98 (2005) 013511.

DOI: 10.1063/1.1940139

Google Scholar

[9] M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, Raman study of the A1(LO) phonon in relaxed and pseudomorphic InGaN epilayers, Appl. Phys. Lett. 83 (2003) 4761-4763.

DOI: 10.1063/1.1627941

Google Scholar

[10] J. W. Ager III, W. Walukiewicz, W. Shan, K. M. Yu, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, Multiphonon resonance Raman scattering in InxGa1− xN, Phys. Rev. B 72 (2005) 155204.

Google Scholar

[11] A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Micro-Raman characterization of InxGa1−xN/GaN∕Al2O3 heterostructures, Phys. Rev. B 72 (2005) 155336.

Google Scholar

[12] A. Kasic, M. Schubert, J. Off, B. Kuhn, F. Scholz, S. Einfeldt, T. Böttcher, D. Hommel, D. J. As, U. Köhler, A. Dadgar, A. Krost, Y. Saito, Y. Nanishi, M. R. Correia, S. Pereira, V. Darakchieva, B. Monemar, H. Amano, I. Akasaki, and G. Wagner, Phonons and free-carrier properties of binary, ternary, and quaternary group-III nitride layers measured by infrared spectroscopic ellipsometry, Phys. Status Solidi C 0 (2003).

DOI: 10.1002/pssc.200303135

Google Scholar

[13] T. R. Yang, M. M. Dvoynenko, Y. F. Cheng, and Z. C. Feng, Far-IR investigation of thin InGaN layers, Physica B 324 (2002) 268-278.

DOI: 10.1016/s0921-4526(02)01412-6

Google Scholar

[14] H. Grille, C. Schnittler, and F. Bechstedt, Phonons in ternary group-III nitride alloys, Phys. Rev. B 61 (2000) 6091-6105.

DOI: 10.1103/physrevb.61.6091

Google Scholar

[15] S. Yu, K. W. Kim, L. Bergman, M. Dutta, M. A. Stroscio, and J. M. Zavada, Long-wavelength optical phonons in ternary nitride-based crystals, Phys. Rev. B 58 (1998) 15283-15287.

DOI: 10.1103/physrevb.58.15283

Google Scholar

[16] F. Gervais and B. Piriou, Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity, J. Phys. C 7 (1974) 2374-2386.

DOI: 10.1088/0022-3719/7/13/017

Google Scholar

[17] R. Kroon, The classical oscillator model and dielectric constants extracted from infrared reflectivity measurements, Infrared Phys. Technol. 51 (2007) 31-43.

DOI: 10.1016/j.infrared.2007.02.002

Google Scholar

[18] D. L. Peterson, A. Petrou, W. Giriat, A. K. Ramdas, and S. Rodriguez, Raman scattering from the vibrational modes in Zn1-xMnxTe, Phys. Rev. B 33 (1986) 1160-1165.

Google Scholar

[19] T. Yang, S. Goto, M. Kawata, K. Uchida, A. Niwa, and J. Gotoh, Optical properties of GaN thin films on sapphire substrates characterized by variable-angle spectroscopic ellipsometry, Jpn. J. Appl. Phys. 37 (1998) L1105-L1108.

DOI: 10.1143/jjap.37.l1105

Google Scholar

[20] B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, Transient electron transport in wurtzite GaN, InN, and AlN, J. Appl Phys. 85 (1999) 7727-7734.

DOI: 10.1063/1.370577

Google Scholar

[21] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN, Phys. Rev. B 58 (1998).

DOI: 10.1103/physrevb.58.12899

Google Scholar

[22] V. Y. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, Experimental and theoretical studies of phonons in hexagonal InN, Appl. Phys. Lett. 75 (1999).

DOI: 10.1063/1.125330

Google Scholar

[23] M. A. Moram and M. E. Vickers, X-ray diffraction of III-nitrides, Rep. Prog. Phys. 72 (2009) 036502.

DOI: 10.1088/0034-4885/72/3/036502

Google Scholar

[24] S. Gökden, R. Tülek, A. Teke, J. H. Leach, Q. Fan, J. Xie, Ü. Özgür, H. Morkoç, S. B. Lisesivdin, and E. Özbay, Mobility limiting scattering mechanisms in nitride-based two-dimensional heterostructures with the InGaN channel, Semicond. Sci. Technol. 25 (2010).

DOI: 10.1088/0268-1242/25/4/045024

Google Scholar

[25] S. P. Fu and Y. F. Chen, Effective mass of InN epilayers, Appl. Phys. Lett. 85 (2004) 1523-1525.

DOI: 10.1063/1.1787615

Google Scholar

[26] Y. Ishitani, X. Wang, S. -B. Che, and A. Yoshikawa, Effect of electron distribution in InN films on infrared reflectance spectrum of longitudinal optical phonon-plasmon interaction region, J. Appl. Phys. 103 (2008) 053515.

DOI: 10.1063/1.2875918

Google Scholar

[27] M. Schubert, T. E. Tiwald, and C. M. Herzinger, Infrared dielectric anisotropy and phonon modes of sapphire, Phys. Rev. B 61 (2000) 8187-8201.

DOI: 10.1103/physrevb.61.8187

Google Scholar

[28] A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, and G. Wagner, Effective electron mass and phonon modes in n-type hexagonal InN, Phys. Rev. B 65 (2002) 115206.

DOI: 10.1103/physrevb.65.115206

Google Scholar