Fabrication and Characterization of PANI-Ag-Co Nanocomposite Thin Films as Microbial Sensor for E. coli Detection

Article Preview

Abstract:

Conducting polymers are excellent host materials for nanoparticles of metals and semiconductors. PANI-Ag-Co nanocomposite was prepared by chemical oxidative polymerization of aniline monomer in the presence of nitric acid. PANI-Ag-Co thin films were deposited on the glass substrate using spin-coating technique. The films were characterized by UV-Vis spectroscopy, XRD, AFM and TEM to analyze the internal structure and surface morphology. The performance of the sensor was conducted using I–V measurement to obtain the changes in the current before and after the incubation with E. coli bacteria in water. In UV-visible absorbance bands, a single peak appears at 421.6 nm in each band indicating the Ag-Co alloy nanoparticles were formed. The peaks in the XRD patterns show the crystals are oriented along (111) planes for Ag while (200) plane for Co. AFM images indicate the surface roughness of the PANI-Ag-Co films decreases when the concentration of Co increased. TEM image shows spherical shaped of Ag-Co alloy particles with diameter in the range of 6 – 10 nm. I–V measurements show that the current change of the films increased when incubated in E. coli. The sensitivity on E. coli increases as we increase the Co concentration. PANI-Ag-Co nanocomposite thin films can be explored further for microbial sensor application in future study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

641-649

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Heijnen, G. Medema, Quantitative detection of E. coli, E. coli O157 and other shiga toxin producing E. coli in water samples using a culture method combined with real-time PCR, J. Water Health 4 (2006) 487–98.

DOI: 10.2166/wh.2006.0032

Google Scholar

[2] K. Jiang, H. Etayash, S. Azmi, S. Naicker, M. Hassanpourfard, P. M. Shaibani, G. Thakur, K. Kaur, T. Thundat, Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy, Anal. Method. (2015).

DOI: 10.1039/c5ay01917f

Google Scholar

[3] T. Saxena, P. Kaushik, M. K. Mohan, Prevalence of E. coli O157: H7 in water sources: an overview on associated diseases, outbreaks and detection methods, Diagn. Micr. Infec. Dis. 82 (2015) 249–264.

DOI: 10.1016/j.diagmicrobio.2015.03.015

Google Scholar

[4] M. Nayak, A. Kotian, S. Marathe, D. Chakravortty, Detection of microorganisms using biosensors–A smarter way towards detection techniques, Biosens. Bioelectron. 25 (2009) 661–667.

DOI: 10.1016/j.bios.2009.08.037

Google Scholar

[5] T. Ahuja, I. A. Mir, D. Kumar, Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials 28 (2007) 791–805.

DOI: 10.1016/j.biomaterials.2006.09.046

Google Scholar

[6] K. S. Ryder, D. G. Morris, J. M. Cooper, Role of conducting polymeric interfaces in promoting biological electron transfer, Biosens. Bioelectron. 12 (1997) 721–727.

DOI: 10.1016/s0956-5663(97)00039-0

Google Scholar

[7] S. Bhadra, D. Khastgir, N. K. Singha, J. H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci. 34 (2009) 783–810.

DOI: 10.1016/j.progpolymsci.2009.04.003

Google Scholar

[8] M. Jaymand, Recent progress in chemical modification of polyaniline, Prog. Polym. Sci. 38 (2013) 1287–1306.

DOI: 10.1016/j.progpolymsci.2013.05.015

Google Scholar

[9] A. K. Sarker, J. D. Hong, Electrochemical reduction of ultrathin graphene oxide/polyaniline films for supercapacitor electrodes with a high specific capacitance, Colloid. Surface. A. 436 (2013) 967–974.

DOI: 10.1016/j.colsurfa.2013.08.043

Google Scholar

[10] K. P. Kamloth, B. J. Polk, M. Josowicz, J. Janata, Photochemical tuning of field-effect transistor with polyaniline gate conductor, Adv. Mater. 13 (2001) 1797–1800.

DOI: 10.1002/1521-4095(200112)13:23<1797::aid-adma1797>3.0.co;2-7

Google Scholar

[11] S. M. Reda, S. M. Al-Ghannam, Synthesis and electrical properties of polyaniline composite with silver nanoparticles, Adv. Mater. Phys. Chem. 2 (2012) 75–81.

DOI: 10.4236/ampc.2012.22013

Google Scholar

[12] Shumaila, G. B. V. S. Lakshmi, M. Alam, A. M. Siddiqui, M. Zulfequar, M. Husain, Synthesis and characterization of Se doped polyaniline, Curr. Appl. Phys. 11 (2011) 217–222.

DOI: 10.1016/j.cap.2010.07.010

Google Scholar

[13] Y. Tan, Y. Zhang, J. Kan, Synthesis and properties on polyaniline in the presence of nickel chloride. Express. Polym. Lett. 13 (2009) 333–339.

DOI: 10.3144/expresspolymlett.2009.42

Google Scholar

[14] N. A. N. Azmy, H. Abdullah, N. M. Naim, A. A. Hamid, S. Shaari, W. H. M. W. Mokhtar, Gamma irradation effect on the structural, morphology and electrical properties of ZnO-CuO doped PVA nanocomposite thin films for Escherichia coli sensor, Radiat. Phys. Chem. 103 (2014).

DOI: 10.1016/j.radphyschem.2014.05.025

Google Scholar

[15] H. Abdullah, N. M. Naim, N. A. N. Azmy, A. A. Hamid, PANI-Ag-Cu nanocomposite thin films based impedimetric microbial sensor for detection of E. coli bacteria, J. Nanomater. (2014), doi: 10. 1155/2014/951640.

DOI: 10.1155/2014/951640

Google Scholar

[16] M. Valodkar, S. Modi, A. Pal, S. Thakore, Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach, Mater. Res. Bull. 46 (2011) 384–389.

DOI: 10.1016/j.materresbull.2010.12.001

Google Scholar

[17] Y. K. Su, C. M. Shen, T. Z. Yang, H. T. Yang, H. J. Gao, H. L. Li, The dependence of Co nanoparticle sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties, Appl. Phys. A 81, (2005) 569–572.

DOI: 10.1007/s00339-004-2713-z

Google Scholar

[18] I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P. K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles, Mater. Chem. Phys. (2013) 1–9.

DOI: 10.1016/j.matchemphys.2013.02.035

Google Scholar

[19] V. Dixit, J. C. Tewari, B. S. Sharma, Detection of E. coli in water using semi-conducting polymeric thin film sensor, Sensor. Actuat. B 120 (2006) 96–103.

DOI: 10.1016/j.snb.2006.01.052

Google Scholar

[20] M. S. Tamboli, M. V. Kulkarni, R. H. Patil, W. N. Gade S. C. Navale, B. B. Kale, Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent, Colloid. Surface. B 92 (2012).

DOI: 10.1016/j.colsurfb.2011.11.006

Google Scholar

[21] Y. Yi, J. K. Park, Microchannel integrated comb-type electrode system for electrochemical detection. IEEE Sensor, Korea (2006).

DOI: 10.1109/icsens.2007.355734

Google Scholar

[22] A. K. Dwivedi, G. Pendharkar, R. B. Deshmukh, R. M. Patrikar, Detection of E. coli using capacitance modulation, COMSOL Conference, India (2010).

Google Scholar

[23] H. Su, Q. Ma, K. Shang, T. Liu, H. Yin, S. Ai, Gold nanoparticles as colorimetric sensor: A case study on E. coli 0157: H7 as a model for Gram-negative bacteria, Sensor. Actuat. B 161 (2012) 298–303.

DOI: 10.1016/j.snb.2011.10.035

Google Scholar

[24] H. Abdullah, N. M. Naim, A. Bolhan, N. A. N. Azmy, A. A. Hamid. Morphology, structural and electrical properties of Ag-Cu alloy nanoparticles embedded in PVA matrix and its performance as E. coli monitoring sensor, Arab. J. Sci. Eng. (2014).

DOI: 10.1007/s13369-014-1557-x

Google Scholar