[1]
Shigeru Kohtani, Shigeki Makino, Akihiko Kudo, Photocatalytic Decoloration of 4-n-Nonylphenol under Irradiation from Solar Simulator, Comparison between BiVO4 and TiO2 Photocatalysts, Chemistry Letters(2002)660.
DOI: 10.1246/cl.2002.660
Google Scholar
[2]
AkihikoKudo, KeikoOmori, and HidekiKato A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties . J. Am. Chem. Soc. 121(1999), 11459~11467.
DOI: 10.1021/ja992541y
Google Scholar
[3]
Lin Zhou, Wenzhong Wang, Shengwei Liu, et. al. A sono chemical route to visible-light-driven high-activity BiVO4 photocatalyst, Journal of Molecular CatalysisA: Chemical252(2006)120~124.
DOI: 10.1016/j.molcata.2006.01.052
Google Scholar
[4]
Weidong Shi, Yan Yan, Xu Yan. Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the decoloration of ciprofloxacin, Chemical Engineering Journal 215~216 (2013).
DOI: 10.1016/j.cej.2012.10.071
Google Scholar
[5]
S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13(2001)4624.
Google Scholar
[6]
Jing Huang, Guoqiang Tan, Lili Zhang, Enhanced photocatalytic activity of tetragonal BiVO4: Influenced by rare earth ion Yb3+, Materials Letters 133 (2014) 20–23.
DOI: 10.1016/j.matlet.2014.06.123
Google Scholar
[7]
Yinzhou Wang, Wei Wang, Hongying Mao, et. al. Electrostatic Self-Assembly of BiVO4−Reduced Graphene Oxide Nanocomposites for Highly Efficient Visible Light Photocatalytic Activities. American Chemical Society Appl. Mater. Interfaces 6(2014).
DOI: 10.1021/am502700p
Google Scholar
[8]
Wenzong Yin, Wenzhong Wang∗, Lin Zhou et. al , CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient decoloration of organic dye under visible-light irradiation, Journal of Hazardous Materials 173 (2010) 194–199.
DOI: 10.1016/j.jhazmat.2009.08.068
Google Scholar
[9]
Tao Yang, Dingguo Xia, Self-assembly of highly crystalline spherical BiVO4 in aqueous solutions Journal of Crystal Growth 311 (2009) 4505–4509.
DOI: 10.1016/j.jcrysgro.2009.08.006
Google Scholar
[10]
Haimei Fan, Dejun Wang, Lingling Wang et. al. Hydrothermal synthesis and photo electricproperties of BiVO4 with different morphologies: An efficient visible-light photocatalyst, Applied Surface Science 257 (2011) 7758–7762.
DOI: 10.1016/j.apsusc.2011.04.025
Google Scholar
[11]
Zhenfeng Zhu, Lian Zhang, Junqi Li, et. al. Synthesis and photocatalytic behavior of BiVO4 with decahedral structure, Ceramics International 39 (2013) 7461–7465.
DOI: 10.1016/j.ceramint.2013.02.093
Google Scholar
[12]
Gangqiang Zhu, Mirabbos Hojamberdiev, Wenxiu Que et al. Hydrothermal synthesis and visible-light photocatalytic activity of porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures / Ceramics International 39 (2013) 9164.
DOI: 10.1016/j.ceramint.2013.05.017
Google Scholar
[13]
Donge Wang, Hongfu Jiang, XuZong, et al, Crystal F acet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation, Chem. Eur. J. 17 (2011) 1275–1282.
DOI: 10.1002/chem.201001636
Google Scholar
[14]
GS. Li, D. Q. Zhang, J. C. Yu, Ordered mesoporous BiVO4 through nanocasting: a superior visible light-driven photocatalyst , Chem, Mater. 20(2008) 3983-3992.
DOI: 10.1021/cm800236z
Google Scholar
[15]
Y. Wang, Z. Wang, S. Muhammad, J. He, CrystEngComm 14(2012)5065-5070.
Google Scholar
[16]
Y. Wang, X. Bai, C. pan, J. He, Y. J. Zhu, Mater. Chem. 22(2012)11568-11573.
Google Scholar
[17]
Li Zhang, Dairong Chen, and Xiuling Jiao , Monoclinic Structured BiVO4 Nano-sheets : Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties, J. Phys. Chem. B 110(2006)2668-2673.
DOI: 10.1021/jp056367d
Google Scholar
[18]
Lin Zhou, Wenzhong Wang, Shengwei Liu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst, Journal of Molecular Catalysis A: Chemical 252(2006)120–124.
DOI: 10.1016/j.molcata.2006.01.052
Google Scholar
[19]
Lei B X, Zhang P, Wang S N, et al. Additive-free hydrothermal synthesis of novel bismuth vanadium oxide dendritic structures as highly efficient visible-light photocatalysts[J]. Materials Science in Semiconductor Processing, 2015, 30: 429-434.
DOI: 10.1016/j.mssp.2014.10.044
Google Scholar
[20]
Bing-Xin Lei, Ping Zhang, Shu-Nuo Wang, Additive-free hydrothermal synthesis of novel bismuth vanadium oxide dendritic structures as highly efficient visible-light photocatalysts, Materials Science in Semiconductor Processing 30 (2015) 429–434.
DOI: 10.1016/j.mssp.2014.10.044
Google Scholar