Synthesis of BiVO4/Bi2VO5.5 Heterogeneous Nanostructures with Enhanced Visible Light Photocatalytic Activity

Article Preview

Abstract:

BiVO4/Bi2VO5.5 heterogeneous nanostructures with enhanced visible light photocatalytic activity were successfully prepared by a facile one-pot solvothermal method, where diethylene glycol (DEG) was used as the solvent. The as-prepared products were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS) and UV-Vis absorption spectroscopy. The results revealed that the molar ratio of Bi3+ to VO43- played an important role in the formation of crystal and morphology. These BiVO4/Bi2VO5.5 heterogeneous nanostructures exhibited higher visible-light-driven photocatalytic efficiency compared to the pure BiVO4 and Bi2VO5.5. For the methyl orange (MO) degradation efficiency of BiVO4/Bi2VO5.5 heterogeneous nanostructures under visible light irradiation, about 95% of MO was degraded within 40min, which is much higher than pure BiVO4 and Bi2VO5.5. The enhancement of photocatalytic activity can attribute to the promoted light absorption capability and the separation efficiency of photo-generated electron-hole pairs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-217

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Maeda, K. and Domen, K. Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light[J]. Chemistry of Materials, 2010. 22(3): 612-623.

DOI: 10.1021/cm901917a

Google Scholar

[2] Schneider, J. Matsuoka, M. Takeuchi, M. Zhang, J. Horiuchi, Y. Anpo, M. Bahnemann, D. W. Understanding TiO2 Photocatalysis: Mechanisms and Materials[J]. Chemical Reviews, 2014. 114(19): pp.9919-86.

DOI: 10.1021/cr5001892

Google Scholar

[3] Jo, W. J. Jang, J. W. Kong, K. J. Kang, H. J. Kim, J. Y. Jun, H. Parmar, K. P. Lee, J. S. Phosphate doping into monoclinic BiVO4 for enhanced photoelectrochemical water oxidation activity[J]. Angewandte Chemie International Edition in English, 2012. 51(13): pp.3147-51.

DOI: 10.1002/anie.201108276

Google Scholar

[4] Kubacka, A. M. Fernandez, G. Colon, G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chemical Reviews, 2012. 112(3): 1555-614.

Google Scholar

[5] Kudo, A. Omori, K. Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999. 121(49): 11459-11467.

DOI: 10.1021/ja992541y

Google Scholar

[6] Tokunaga, S. Kato, H. Kudo, A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties[J]. Chemistry of Materials, 2001. 13(12): 4624-4628.

DOI: 10.1021/cm0103390

Google Scholar

[7] Zhou, L. Wang, W. Z. Liu, S. W. Zhang, L. S. Xu, H. L. Zhu, W. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst[J]. Journal of Molecular Catalysis a-Chemical, 2006. 252(1-2): 120-124.

DOI: 10.1016/j.molcata.2006.01.052

Google Scholar

[8] Zhou, L. Wang, W. Z. Xu, H. L. Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy[J]. Crystal Growth & Design, 2008. 8(2): 728-733.

DOI: 10.1021/cg0705761

Google Scholar

[9] Ren, L. Ma, L. L. Jin, L. Wang, J. B. Qiu, M. Q. Yu, Y. Template-free synthesis of BiVO4 nanostructures: II. Relationship between various microstructures for monoclinic BiVO4 and their photocatalytic activity for the degradation of rhodamine B under visible light[J]. Nanotechnology, 2009. 20(40).

DOI: 10.1088/0957-4484/20/40/405602

Google Scholar

[10] Ren, L. Ma, L. L. Jin, L. Wang, J. B. Qiu, M. Q. Yu, Y. Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light[J]. Nanotechnology, 2009. 20(11).

DOI: 10.1088/0957-4484/20/11/115603

Google Scholar

[11] Zhang, A. P. Zhang, J. Z. Synthesis and characterization of Ag/BiVO4 composite photocatalyst[J]. Applied Surface Science, 2010. 256(10): 3224-3227.

DOI: 10.1016/j.apsusc.2009.12.009

Google Scholar

[12] Nagabhushana, G. P. Nagaraju, G. Chandrappa, G.T. Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation[J]. Journal of Materials Chemistry A, 2013. 1(2): 388-394.

DOI: 10.1039/c2ta00490a

Google Scholar

[13] Chatchai, P. Kishioka, S. Y. Murakami, Y. Nosaka, A. Y. Nosaka, Y. Enhanced photoelectro- catalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation[J]. Electrochimica Acta, 2010. 55(3): 592-596.

DOI: 10.1016/j.electacta.2009.09.032

Google Scholar

[14] Ju, P. Wang, P. Li, B. Fan, H. Ai, S. Y. Zhang, D. Wang, Y. A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2014. 236: 430-437.

DOI: 10.1016/j.cej.2013.10.001

Google Scholar

[15] Wang, W. Wang, J. Wang, Z. Wei, X. Liu, L. Ren, Q. Gao, W. Liang, Y. Shi, H. p-n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance[J]. Dalton Transactions, 2014. 43(18): 6735-43.

DOI: 10.1039/c3dt53613k

Google Scholar

[16] Al-Areqi, N.A.S. Al-Alas, Ahlam. Al-Kamali, Ahmed S. N. Ghaleb, Kh A. S. Al-Mureish, K. Photodegradation of 4-SPPN dye catalyzed by Ni(II)-substituted Bi2VO5. 5 system under visible light irradiation: Influence of phase stability and perovskite vanadate–oxygen vacancies of photocatalyst[J]. Journal of Molecular Catalysis A: Chemical, 2014. 381(0): 1-8.

DOI: 10.1016/j.molcata.2013.09.035

Google Scholar