Effect of Plasmid DNA Dimension Evolution on the Size of Ag Nanoparticles during Photoirradiation

Article Preview

Abstract:

Under the photoirradiation, DNA works as both template and reducing agent to drive the formation of metallic nanomaterials. In this study the plasmid DNA with different base pairs was applied as biotemplate to synthesize Ag nanoparticles (NPs) by using photoirradiation approach. The evolution of DNA dimension changed during the synthesis process, and their effect on the morphology of the synthesized Ag NPs was studied by UV-Vis spectra, FT-IR spectra, Raman spectra, AFM, and TEM. It is found that the plasmid DNA shrinked twice during the synthesis, the first time happened when the Ag (I) cations neutralized the negative charge along the DNA chain, and the second time happened when plasmid DNA reduced Ag (I) induced by the ultraviolet C (254 nm) irradiation. The size of the synthesized Ag NPs showed approximately linear relationship with the dimension of plasmid DNA scaffolds under this photo-induce condition. The compaction degree of the plasmid DNA during the Ag formation was shown by the slope of the linear relationship.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Chen, X. Dang, M.T. Klug, J. Qi, N.D. Courchesne, F.J. Burpo, N. Fang, P.T. Hammond, A.M. Belcher, Versatile three-dimensional virus-based template for dye-sensitized solar eells with improved electron transport and light harvesting, ACS Nano 7 (2013).

DOI: 10.1021/nn4014164

Google Scholar

[2] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. Roller, A. Hogele, F.C. Simmel, A.O. Govorov, T. Liedl, DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature 483 (2012) 311-314.

DOI: 10.1038/nature10889

Google Scholar

[3] R. Schreiber, J. Do, E. Roller, T. Zhang, V.J. Schüller, P.C. Nickels, J. Feldmann, T. Liedl, hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds, Nat. Nanotech. 9 (2014) 74-78.

DOI: 10.1038/nnano.2013.253

Google Scholar

[4] J.A. Fan, Y. He, K. Bao, C. Wu, J. Bao, N.B. Schade, V.N. Manoharan, G. Shvets, P. Nordlander, D.R. Liu, F. Capasso, DNA-enabled self-assembly of plasmonic nanoclusters, Nano Lett. 11 (2011) 4859-4864.

DOI: 10.1021/nl203194m

Google Scholar

[5] J.T. Petty, S.P. Story, J. Hsiaing, R.M. Dickson, DNA-templated molecular silver fluorophores, J. Phys. Chem. Lett. 4(2013) 1148-1155.

DOI: 10.1021/jz4000142

Google Scholar

[6] S. Kundu, K. Wang, D. Huitink, H. Liang, Photoinduced formation of electrically conductive thin palladium nanowires on DNA scaffolds, Langmuir 25(2009) 10146-10152.

DOI: 10.1021/la900939c

Google Scholar

[7] T.X. Fan, S.K. Chow, D. Zhang, Biomorphic mineralization: from biology to materials. Prog. Mater. Sci. 54 (2009) 542-659.

Google Scholar

[8] R.M. Izatt, J.J. Christensen, J.H. Rytting, Sites and thermodyanmic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides, Chem. Rev. 71(1971).

DOI: 10.1021/cr60273a002

Google Scholar

[9] J. Liu, X. Zhang, M. Yu, S. Li, J. Zhang, Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds, Small 8 (2012) 310-316.

DOI: 10.1002/smll.201101423

Google Scholar

[10] J. Samson, A. Varotto, P.C. Nahirney, A. Toschi, I. Piscopo, C.M. Drain, Fabrication of metal nanoparticles using toroidal plasmid DNA as a scrificial mold, ACS Nano 3(2009) 339-344.

DOI: 10.1021/nn800758n

Google Scholar

[11] Y. Tao, E. Ju, J. Ren, X. Qu, Metallization of plasmid DNA for efficient gene delivery, Chem. Commun. 49 (2013) 9791-9793.

DOI: 10.1039/c3cc45834b

Google Scholar

[12] Y.L. Jung, C. Jung, J.H. Park, M.I. Kim, H.G. Park, Direct detection of unamplified genomic DNA based on photo-induced silver ion reduction by DNA molecules, Chem. Commun. 49 (2013) 2350-2352.

DOI: 10.1039/c3cc38552c

Google Scholar

[13] X. Zhang, J. Liu, S. Li, X. Tan, J. Zhang, M. Yu, M. Zhao, DNA assembled single-walled carbon nanotube nanocomposites for high efficiency dye-sensitized solar cells, J. Mater. Chem. A 1 (2013) 11070-11077.

DOI: 10.1039/c3ta11556a

Google Scholar

[14] X. Zhang, J. Liu, S. Li, X. Tan, M. Yu, J. Dua, Bioinspired synthesis of Ag@TiO2 plasmonic nanocomposites to enhance the light harvesting of dye-sensitized solar cells, RSC Adv. 3 (2013) 18587-18595.

DOI: 10.1039/c3ra42429d

Google Scholar

[15] L. Berti, A. Alessandrini, P. Facci, DNA-templated photoinduced silver deposition, J. Am. Chem. Soc. 127 (2005) 11216-11217.

DOI: 10.1021/ja052461w

Google Scholar

[16] R.P. Sinha, D. Häder, UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci. 1 (2002) 225-236.

DOI: 10.1039/b201230h

Google Scholar

[17] C. Bhattacharjee, R.N. Sharan, UV-C radiation induced conformational relaxation of pMTa4 DNA in escherichia coli may be the cause of single strand breaks, Int. J. Radiat. Biol. 81 (2005) 919-927.

DOI: 10.1080/09553000600566048

Google Scholar